104 research outputs found

    Protective effect of genistein on radiation-induced intestinal injury in tumor bearing mice

    Get PDF
    BACKGROUND: Radiation therapy is the most widely used treatment for cancer, but it causes the side effect of mucositis due to intestinal damage. We examined the protective effect of genistein in tumor-bearing mice after abdominal irradiation by evaluation of apoptosis and intestinal morphological changes. METHODS: Mouse colon cancer CT26 cells were subcutaneously injected at the flank of BALB/c mice to generate tumors. The tumor-bearing mice were treated with abdominal radiation at 5 and 10 Gy, and with genistein at 200 mg/kg body weight per day for 1 d before radiation. The changes in intestinal histology were evaluated 12 h and 3.5 d after irradiation. To assess the effect of the combination treatment on the cancer growth, the tumor volume was determined at sacrifice before tumor overgrowth occurred. RESULTS: Genistein significantly decreased the number of apoptotic nuclei compared with that in the irradiation group 12 h after 5 Gy irradiation. Evaluation of histological changes showed that genistein ameliorated intestinal morphological changes such as decreased crypt survival, villus shortening, and increased length of the basal lamina 3.5 d after 10 Gy irradiation. Moreover, the genistein-treated group exhibited more Ki-67-positive proliferating cells in the jejunum than the irradiated control group, and crypt depths were greater in the genistein-treated group than in the irradiated control group. The mean weight of the CT26 tumors was reduced in the group treated with genistein and radiation compared with the control group. CONCLUSION: Genistein had a protective effect on intestinal damage induced by irradiation and delayed tumor growth. These results suggest that genistein is a useful candidate for preventing radiotherapy-induced intestinal damage in cancer patients

    Ca-Stimulated Type 8 Adenylyl Cyclase Is Required for Rapid Acquisition of Novel Spatial Information and for Working/Episodic-Like Memory

    Get PDF
    Ca-stimulated adenylyl cyclases (ACs) transduce neuronal stimulation-evoked increase in calcium to the production of cAMP, which impinges on the regulation of many aspects of neuronal function. Type 1 and type 8 AC (AC1 and AC8) are the only ACs that are directly stimulated by Ca. Although AC1 function was implicated in regulating reference spatial memory, the function of AC8 in memory formation is not known. Because of the different biochemical properties of AC1 and AC8, these two enzymes may have distinct functions. For example, AC1 activity is regulated by both Ca and G-proteins. In contrast, AC8 is a pure Ca sensor. It is neither stimulated by Gs nor inhibited by Gi. Recent studies also suggested that AC1 and AC8 were differentially concentrated at different subcellular domains, implicating that Ca-stimulated signaling might be compartmentalized. In this study, we used AC8 knock-out (KO) mice and found behavioral deficits in memory retention for temporal dissociative passive avoidance and object recognition memory. When examined by Morris water maze, AC8KOmice showed normal reference memory. However, the acquisition of newer spatial information was defective in AC8 KO mice. Furthermore, AC8 KO mice were severely impaired in hippocampus-dependent episodic-like memory when examined by the delayed matching-to-place task. Because AC8 is preferentially localized at the presynaptic active zone, our results suggest a novel role of presynaptic cAMP signaling in memory acquisition and retention, as well as distinct mechanisms underlying reference and working/episodic-like memory

    Cytotoxicity of gamma-ray in rat immature hippocampal neurons

    Get PDF
    This in vitro study evaluated the detrimental effect of acute gamma (γ)-irradiation on rat immature hippocampal neurons. Rat immature hippocampal neurons (0.5 day in vitro) were irradiated with 0~4 Gy γ-rays. Cytotoxicity was analyzed using a lactate dehydrogenase release assay at 24 h after γ-irradiation. Radiation-induced cytotoxicity in immature hippocampal neurons increased in a dose-dependent manner. Pre-treatments of pro-apoptotic caspase inhibitors and anti-oxidative substances significantly blocked γ-irradiation-induced cytotoxicity in immature hippocampal neurons. The results suggest that the caspase-dependent cytotoxicity of γ-rays in immature hippocampal cultured neurons may be caused by oxidative stress

    Amifostine ameliorates recognition memory defect in acute radiation syndrome caused by relatively low-dose of gamma radiation

    Get PDF
    This study examined whether amifostine (WR-2721) could attenuate memory impairment and suppress hippocampal neurogenesis in adult mice with the relatively low-dose exposure of acute radiation syndrome (ARS). These were assessed using object recognition memory test, the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and immunohistochemical markers of neurogenesis [Ki-67 and doublecortin (DCX)]. Amifostine treatment (214 mg/kg, i.p.) prior to irradiation significantly attenuated the recognition memory defect in ARS, and markedly blocked the apoptotic death and decrease of Ki-67- and DCX-positive cells in ARS. Therefore, amifostine may attenuate recognition memory defect in a relatively low-dose exposure of ARS in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis
    • …
    corecore