10,396 research outputs found

    Coarse-graining the dynamics of coupled oscillators

    Full text link
    We present an equation-free computational approach to the study of the coarse-grained dynamics of {\it finite} assemblies of {\it non-identical} coupled oscillators at and near full synchronization. We use coarse-grained observables which account for the (rapidly developing) correlations between phase angles and oscillator natural frequencies. Exploiting short bursts of appropriately initialized detailed simulations, we circumvent the derivation of closures for the long-term dynamics of the assembly statistics.Comment: accepted for publication in Phys. Rev. Let

    Coarse-grained computations of demixing in dense gas-fluidized beds

    Full text link
    We use an "equation-free", coarse-grained computational approach to accelerate molecular dynamics-based computations of demixing (segregation) of dissimilar particles subject to an upward gas flow (gas-fluidized beds). We explore the coarse-grained dynamics of these phenomena in gently fluidized beds of solid mixtures of different densities, typically a slow process for which reasonable continuum models are currently unavailable

    Resonances of the cusp family

    Full text link
    We study a family of chaotic maps with limit cases the tent map and the cusp map (the cusp family). We discuss the spectral properties of the corresponding Frobenius--Perron operator in different function spaces including spaces of analytic functions. A numerical study of the eigenvalues and eigenfunctions is performed.Comment: 14 pages, 3 figures. Submitted to J.Phys.

    Single-mode approximation and effective Chern-Simons theories for quantum Hall systems

    Full text link
    A unified description of elementary and collective excitations in quantum Hall systems is presented within the single-mode approximation (SMA) framework, with emphasis on revealing an intimate link with Chern-Simons theories. It is shown that for a wide class of quantum Hall systems the SMA in general yields, as an effective theory, a variant of the bosonic Chern-Simons theory. For single-layer systems the effective theory agrees with the standard Chern-Simons theory at long wavelengths whereas substantial deviations arise for collective excitations in bilayer systems. It is suggested, in particular, that Hall-drag experiments would be a good place to detect out-of-phase collective excitations inherent to bilayer systems. It is also shown that the intra-Landau-level modes bear a similarity in structure (though not in scale) to the inter-Landau-level modes, and its implications on the composite-fermion and composite-boson theories are discussed.Comment: 9 pages, Revtex

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    X-Ray Resonant Scattering as a Direct Probe of Orbital Ordering in Transition-Metal Oxides

    Full text link
    X-ray resonant scattering at the K-edge of transition metal oxides is shown to measure the orbital order parameter, supposed to accompany magnetic ordering in some cases. Virtual transitions to the 3d-orbitals are quadrupolar in general. In cases with no inversion symmetry, such as V2_2O3_3, treated in detail here, a dipole component enhances the resonance. Hence, we argue that the detailed structure of orbital order in V2_2O3_3 is experimentally accessible.Comment: LaTex using RevTex, 4 pages and two included postscript figure

    Quasi-periodic flares in EXO 2030+375 observed with INTEGRAL

    Full text link
    Context: Episodic flaring activity is a common feature of X-ray pulsars in HMXBs. In some Be/X-ray binaries flares were observed in quiescence or prior to outbursts. EXO 2030+375 is a Be/X-ray binary showing "normal" outbursts almost every ~46 days, near periastron passage of the orbital revolution. Some of these outbursts were occasionally monitored with the INTEGRAL observatory. Aims: The INTEGRAL data revealed strong quasi-periodic flaring activity during the rising part of one of the system's outburst. Such activity has previously been observed in EXO 2030+375 only once, in 1985 with EXOSAT. (Some indications of single flares have also been observed with other satellites.) Methods: We present the analysis of the flaring behavior of the source based on INTEGRAL data and compare it with the flares observed in EXO 2030+375 in 1985. Results: Based on the observational properties of the flares, we argue that the instability at the inner edge of the accretion disk is the most probable cause of the flaring activity.Comment: Accepted for publication in A&A Lette
    • …
    corecore