5 research outputs found

    Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients

    Get PDF
    Metastasis continues to be the primary cause of all cancer-related deaths despite the recent advancements in cancer treatments. To evaluate the role of mutations in overall survival (OS) and treatment outcomes, we analyzed 957 metastatic patients with seven major cancer types who had available molecular testing results with a FoundationOne CDx¼ panel. The most prevalent genes with somatic mutations were TP53, KRAS, APC, and LRP1B. In this analysis, these genes had mutation frequencies higher than in publicly available datasets. We identified that the somatic mutations were seven mutually exclusive gene pairs and an additional fifty-two co-occurring gene pairs. Mutations in the mutually exclusive gene pair APC and CDKN2A showed an opposite effect on the overall survival. However, patients with CDKN2A mutations showed significantly shorter OS (HR: 1.72, 95% CI: 1.34–2.21, p \u3c 0.001) after adjusting for cancer type, age at diagnosis, and sex. Five-year post metastatic diagnosis survival analysis showed a significant improvement in OS (median survival 28 and 43 months in pre-2015 and post-2015 metastatic diagnosis, respectively, p = 0.00021) based on the year of metastatic diagnosis. Although the use of targeted therapies after metastatic diagnosis prolonged OS, the benefit was not statistically significant. However, longer five-year progression-free survival (PFS) was significantly associated with targeted therapy use (median 10.9 months (CI: 9.7–11.9 months) compared to 9.1 months (CI: 8.1–10.1 months) for non-targeted therapy, respectively, p = 0.0029). Our results provide a clinically relevant overview of the complex molecular landscape and survival mechanisms in metastatic solid cancers

    Alternative Preprocessing of RNA-Sequencing Data in The Cancer Genome Atlas Leads to Improved Analysis Results

    No full text
    Motivation: The Cancer Genome Atlas (TCGA) RNA-Sequencing data are used widely for research. TCGA provides ‘Level 3’ data, which have been processed using a pipeline specific to that resource. However, we have found using experimentally derived data that this pipeline produces gene-expression values that vary considerably across biological replicates. In addition, some RNA-Sequencing analysis tools require integer-based read counts, which are not provided with the Level 3 data. As an alternative, we have reprocessed the data for 9264 tumor and 741 normal samples across 24 cancer types using the Rsubread package. We have also collated corresponding clinical data for these samples. We provide these data as a community resource. Results: We compared TCGA samples processed using either pipeline and found that the Rsubread pipeline produced fewer zero-expression genes and more consistent expression levels across replicate samples than the TCGA pipeline. Additionally, we used a genomic-signature approach to estimate HER2 (ERBB2) activation status for 662 breast-tumor samples and found that the Rsubread data resulted in stronger predictions of HER2 pathway activity. Finally, we used data from both pipelines to classify 575 lung cancer samples based on histological type. This analysis identified various non-coding RNA that may influence lung-cancer histology. Availability and implementation: The RNA-Sequencing and clinical data can be downloaded from Gene Expression Omnibus (accession number GSE62944). Scripts and code that were used to process and analyze the data are available from https://github.com/srp33/TCGA_RNASeq_Clinical

    Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients

    Get PDF
    Metastasis continues to be the primary cause of all cancer-related deaths despite the recent advancements in cancer treatments. To evaluate the role of mutations in overall survival (OS) and treatment outcomes, we analyzed 957 metastatic patients with seven major cancer types who had available molecular testing results with a FoundationOne CDx¼ panel. The most prevalent genes with somatic mutations were TP53, KRAS, APC, and LRP1B. In this analysis, these genes had mutation frequencies higher than in publicly available datasets. We identified that the somatic mutations were seven mutually exclusive gene pairs and an additional fifty-two co-occurring gene pairs. Mutations in the mutually exclusive gene pair APC and CDKN2A showed an opposite effect on the overall survival. However, patients with CDKN2A mutations showed significantly shorter OS (HR: 1.72, 95% CI: 1.34–2.21, p \u3c 0.001) after adjusting for cancer type, age at diagnosis, and sex. Five-year post metastatic diagnosis survival analysis showed a significant improvement in OS (median survival 28 and 43 months in pre-2015 and post-2015 metastatic diagnosis, respectively, p = 0.00021) based on the year of metastatic diagnosis. Although the use of targeted therapies after metastatic diagnosis prolonged OS, the benefit was not statistically significant. However, longer five-year progression-free survival (PFS) was significantly associated with targeted therapy use (median 10.9 months (CI: 9.7–11.9 months) compared to 9.1 months (CI: 8.1–10.1 months) for non-targeted therapy, respectively, p = 0.0029). Our results provide a clinically relevant overview of the complex molecular landscape and survival mechanisms in metastatic solid cancers
    corecore