572 research outputs found

    Lattice thermal conductivity of disordered binary alloys : a formulation

    Full text link
    We present here a formulation for the calculation of the configuration averaged lattice thermal conductivity in random alloys. Our formulation is based on the augmented-space theorem, introduced by one of us, combined with a generalized diagrammatic technique. The diagrammatic approach simplifies the problem of including effects of disorder corrections to a great extent. The approach allows us to obtain an expression for the effective heat current in case of disordered alloys, which in turn is used in a Kubo-Greenwood type formula for the thermal conductivity. We show that disorder scattering renormalizes the phonon propagators as well as the heat currents. The corrections to the current terms have been shown to be related to the self-energy of the propagators. We also study the effect of vertex corrections in a simplified ladder diagram approximation. A mode dependent diffusivity DγD_{\gamma} and then a total thermal diffusivity averaged over different modes are defined. Schemes for implementing the said formalism are discussed. A few initial numerical results on the frequency and temperature dependence of lattice thermal conductivity are presented for NiPd alloy and are also compared with experiment. We also display numerical results on the frequency dependence of thermal diffusivity averaged over modes.Comment: 16 pages, 17 figure

    Inelastic neutron scattering in random binary alloys : an augmented space approach

    Full text link
    Combining the augmented space representation for phonons with a generalized version of Yonezawa-Matsubara diagrammatic technique, we have set up a formalism to seperate the coherent and incoherent part of the total intensity of thermal neutron scattering from disordered alloys. This is done exacly without taking any recourse to mean-field like approximation (as done previously). The formalism includes disorder in masses, force constants and scattering lengths. Implementation of the formalism to realistic situations is performed by an augmented space Block recursion which calculates entire Green matrix and self energy matrix which in turn is needed to evaluate the coherent and incoherent intensities. we apply the formalism to NiPd and NiPt alloys. Numerical results on coherent and incoherent scattering cross sections are presented along the highest symmetry directions. Finally the incoherent intensities are compared with the CPA and also with experiments.Comment: 18 pages, 13 figure

    Optical properties of random alloys : Application to Cu_{50}Au_{50} and Ni_{50}Pt_{50}

    Full text link
    In an earlier paper [K. K. Saha and A. Mookerjee, Phys. Rev. B 70 (2004) (in press) or, cond-mat/0403456] we had presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us [A. Mookerjee, J. Phys. C: Solid State Phys. 6, 1340 (1973)]. In this communication we shall combine our formulation with the tight-binding linear muffin-tin orbitals (TB-LMTO) technique to study the optical conductivities of two alloys Cu_{50}Au_{50} and Ni_{50}Pt_{50}.Comment: 5 pages, 7 figure

    Augmented space recursion for partially disordered systems

    Full text link
    Off-stoichiometric alloys exhibit partial disorder, in the sense that only some of the sublattices of the stoichiometric ordered alloy become disordered. This paper puts forward a generalization of the augmented space recursion (ASR) (introduced earlier by one of us (Mookerjee et al 1997(*))) for systems with many atoms per unit cell. In order to justify the convergence properties of ASR we have studied the convergence of various moments of local density of states and other physical quantities like Fermi energy and band energy. We have also looked at the convergence of the magnetic moment of Ni, which is very sensitive to numerical approximations towards the k-space value 0.6 μB\mu_{B} with the number of recursion steps prior to termination.Comment: Latex 2e, 21 Pages, 13 Figures, iopb style file attache

    Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k-representation

    Full text link
    We present here an augmented space recursive technique in the k-representation which include diagonal, off-diagonal and the environmental disorder explicitly : an analytic, translationally invariant, multiple scattering theory for phonons in random binary alloys.We propose the augmented space recursion (ASR) as a computationally fast and accurate technique which will incorporate configuration fluctuations over a large local environment. We apply the formalism to Ni55Pd45Ni_{55}Pd_{45}, Ni_{88}Cr_12} and Ni50Pt50Ni_{50}Pt_{50} alloys which is not a random choice. Numerical results on spectral functions, coherent structure factors, dispersion curves and disordered induced FWHM's are presented. Finally the results are compared with the recent itinerant coherent potential approximation (ICPA) and also with experiments.Comment: 20 pages, LaTeX, 23 figure

    Structure, bonding and magnetism in cobalt clusters

    Full text link
    The structural, electronic and magnetic properties of Con_n clusters (n=2−n=2-20) have been investigated using density functional theory within the pseudopotential plane wave method. An unusual hexagonal growth pattern has been observed in the intermediate size range, n=15−n=15-20. The cobalt atoms are ferromagnetically ordered and the calculated magnetic moments are found to be higher than that of corresponding hcp bulk value, which are in good agreement with the recent Stern-Gerlach experiments. The average coordination number is found to dominate over the average bond length to determine the effective hybridization and consequently the cluster magnetic moment.Comment: 12 pages and 9 figure

    An augmented space recursion study of the electronic structure of rough epitaxial overlayers

    Full text link
    In this communication we propose the use of the Augmented Space Recursion as an ideal methodology for the study of electronic and magnetic structures of rough surfaces, interfaces and overlayers. The method can take into account roughness, short-ranged clustering effects, surface dilatation and interdiffusion. We illustrate our method by an application of Fe overlayer on Ag (100) surface.Comment: 22 pages, Latex, 6 postscript figure

    Emergence of noncollinear magnetic ordering in small magnetic clusters: Mnn_n and As@Mnn_n

    Full text link
    Using first-principles density functional calculations, we have studied the magnetic ordering in pure Mnn_n (n=2−n=2-10, 13, 15, 19) and As@Mnn_n (n=1−n=1-10) clusters. Although, for both pure and doped manganese clusters, there exists many collinear and noncollinear isomers close in energy, the smaller clusters with n⩽n\leqslant5 have collinear magnetic ground state and the emergence of noncollinear ground states is seen for n⩾n\geqslant6 clusters. Due to strong p−dp-d hybridization in As@Mnn_n clusters, the binding energy is substantially enhanced and the magnetic moment is reduced compared to the corresponding pure Mnn_n clusters.Comment: 10 Pages and 5 Figure

    Study of Phase Stability in NiPt Systems

    Full text link
    We have studied the problem of phase stability in NiPt alloy system. We have used the augmented space recursion based on the TB-LMTO as the method for studying the electronic structure of the alloys. In particular, we have used the relativistic generalization of our earlier technique. We note that, in order to predict the proper ground state structures and energetics, in addition to relativistic effects, we have to take into account charge transfer effects with precision.Comment: 22 pages, 7 figures. Accepted for publication in JPC
    • …
    corecore