1 research outputs found
The rings of n-dimensional polytopes
Points of an orbit of a finite Coxeter group G, generated by n reflections
starting from a single seed point, are considered as vertices of a polytope
(G-polytope) centered at the origin of a real n-dimensional Euclidean space. A
general efficient method is recalled for the geometric description of G-
polytopes, their faces of all dimensions and their adjacencies. Products and
symmetrized powers of G-polytopes are introduced and their decomposition into
the sums of G-polytopes is described. Several invariants of G-polytopes are
found, namely the analogs of Dynkin indices of degrees 2 and 4, anomaly numbers
and congruence classes of the polytopes. The definitions apply to
crystallographic and non-crystallographic Coxeter groups. Examples and
applications are shown.Comment: 24 page