62 research outputs found

    A Qualitative Comparison of Approaches Supporting Business Process Variability

    Get PDF
    The increasing adoption of process-aware information systems, together with the reuse of process knowledge, has led to the emergence of process model repositories with large process families, i.e., collections of related process model variants. For managing such related model collections two types of approaches exist. While behavioral approaches take supersets of variants and derive a process variant by hiding and blocking process elements, structural approaches take a base process model as input and derive a process variant by applying a set of change operations to it. However, at the current stage no framework for assessing these approaches exists and it is not yet clear which approach should be better used and under which circumstances. Therefore, to give first insights about this issue, this work compares both approaches in terms of understandability of the produced process model artifacts, which is fundamental for the management of process families and the reuse of their contained process fragments. In addition, the comparison can serve as theoretical basis for conducting experiments as well as for fostering the development of tools managing business process variability

    How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?

    Get PDF
    The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein's gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity. A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell's equations expressed in terms of the excitation H=(D,H) and the field strength F=(E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H= functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni), and find a method for deriving the metric from linear electrodynamics (Toupin, Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al. (eds.). Springer, Berlin (2000) to be published (Revised version uses Springer Latex macros; Sec. 6 substantially rewritten; appendices removed; the list of references updated

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Seven Process Modeling Guidelines (7PMG)

    Get PDF
    When enterprises see their productivity, quality, or regulatory compliance challenged, they often set up process-aware information systems like ERP systems to bring about fundamental improvements. But without a proper understanding of the business processes that need to be supported, they are doomed to fail. Mapping business processes as graphical models is an important step in this kind of initiatives. It is estimated that organizations that had the best results spent more than 40 percent of the total project time on discovery and construction of their initial process model. Business process modeling software has greatly eased the standardization, storage, and sharing of diagrams. But despite existing tool support, there is a notable uncertainty among practitioners about how to create process models that analysts and business professionals can easily analyze and understand. Available modeling frameworks and guidelines provide insight into the major quality categories, but remain too abstract to be directly applicable in practice. Against this background, we propose a set of seven guidelines for process modeling, called 7PMG. Each of its elements is based on findings from sound quantitative research into the relationship between process modeling styles on the one hand and both model understanding and error-proneness on the other. In this way, 7PMG not only contrasts earlier work that has been criticized for its lack of empirical foundation. It also offers guidance that practitioners can apply in their business-process centered initiatives straightaway
    corecore