331 research outputs found

    Extending Continuum Models for Atom Probe Simulation

    Full text link
    This work describes extensions to existing level-set algorithms developed for application within the field of Atom Probe Tomography (APT). We present a new simulation tool for the simulation of 3D tomographic volumes, using advanced level set methods. By combining narrow-band, B-Tree and particle-tracing approaches from level-set methods, we demonstrate a practical tool for simulating shape changes to APT samples under applied electrostatic fields, in three dimensions. This work builds upon our previous studies by allowing for non-axially symmetric solutions, with minimal loss in computational speed, whilst retaining numerical accuracy

    DF-Fit : A robust algorithm for detection of crystallographic information in Atom Probe Tomography data

    Full text link
    We report on a new algorithm for detection of crystallographic information in 3D, as retained in Atom Probe Tomography (APT), with improved robustness and signal detection performance. The algorithm is underpinned by 1D distribution functions, as per existing algorithms, but eliminates an unnecessary parameter as compared to current methods. By examining traditional distribution functions in an automated fashion in real space, rather than using Fourier transform approaches, we utilise an error metric based upon the expected value for a spatially random distribution for detecting crystallography. We show cases where the metric is able to successfully obtain orientation information, and show that it can function with high levels of additive and displacive background noise. We additionally compare this metric to Fourier transform methods, showing fewer artefacts when examining simulated datasets. An extension of the approach is used to aid the automatic detection of high-quality data regions within an entire dataset, albeit with a large increase in computational cost. This extension is demonstrated on acquired Aluminium and Tungsten APT datasets, and shown to be able to discern regions of the data which have relatively improved spatial data quality. Finally, this program has been made available for use in other laboratories undertaking their own analyses

    Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces

    Full text link
    Model sets (or cut and project sets) provide a familiar and commonly used method of constructing and studying nonperiodic point sets. Here we extend this method to situations where the internal spaces are no longer Euclidean, but instead spaces with p-adic topologies or even with mixed Euclidean/p-adic topologies. We show that a number of well known tilings precisely fit this form, including the chair tiling and the Robinson square tilings. Thus the scope of the cut and project formalism is considerably larger than is usually supposed. Applying the powerful consequences of model sets we derive the diffractive nature of these tilings.Comment: 11 pages, 2 figures; dedicated to Peter Kramer on the occasion of his 65th birthda

    Diffractive point sets with entropy

    Full text link
    After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. We show that taking the site occupation of a model set stochastically results, with probabilistic certainty, in well-defined diffractive properties augmented by a constant diffuse background. We discuss both the case of independent, but identically distributed (i.i.d.) random variables and that of independent, but different (i.e., site dependent) random variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th birthday; final version, some minor addition

    Microstructural evolution and transmutation in tungsten under ion and neutron irradiation

    Get PDF
    This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 °C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against FISPACT modelling. The measured Re and Os concentration was used to create alloys with equivalent concentrations of Re and Os. These alloys were exposed to self-ion irradiation to a peak dose of 1.7 dpa at 800 °C. APT showed that self-ion irradiation leads to the formation of small Os clusters, wheras under neutron irradiation large Re/Os clusters form. Voids are formed by both ion and neutron irradiation, but the voids formed by neutron irradiation are larger. By comparing the behaviour of W-1.4Re and W-1.4Re-0.1Os, suppression of Re cluster formation was observed. Irradiation hardening was measured using nanoindentation and was found to be 2.7 GPa, after neutron irradiation and 1.6 GPa and 0.6 GPa for the self-ion irradiated W-1.4Re and W-1.4Re-0.1Os. The higher hardening is attributed to the barrier strength of large voids and Re/Os clusters that are observed after neutron irradiation

    The Kinetics of Primary Alpha Plate Growth in Titanium Alloys

    Get PDF
    The kinetics of primary alpha-Ti colony/Widmanstatten plate growth from the beta are examined, comparing model to experiment. The plate growth velocity depends sensitively both on the diffusivity D(T) of the rate-limiting species and on the supersaturation around the growing plate. These result in a maxima in growth velocity around 40 K below the transus, once sufficient supersaturation is available to drive plate growth. In Ti-6246, the plate growth velocity was found to be around 0.32 um min-1 at 850 oC, which was in good agreement with the model prediction of 0.36 um min-1 . The solute field around the growing plates, and the plate thickness, was found to be quite variable, due to the intergrowth of plates and soft impingement. This solute field was found to extend to up to 30 nm, and the interface concentration in the beta was found to be around 6.4 at.% Mo. It was found that increasing O content will have minimal effect on the plate lengths expected during continuous cooling; in contrast, Mo approximately doubles the plate lengths obtained for every 2 wt.% Mo reduction. Alloys using V as the beta stabiliser instead of Mo are expected to have much faster plate growth kinetics at nominally equivalent V contents. These findings will provide a useful tool for the integrated design of alloys and process routes to achieve tailored microstructures.Comment: Revised version resubmitted to journa
    corecore