944 research outputs found

    The complete second-order diffraction and radiation solutions for a vertically axisymmetric body

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1989.Includes bibliographical references (leaves 233-238).by Moo-Hyun Kim.Ph.D

    Is Heparin an Acceptable Anticoagulant When Glycoprotein IIb/IIIa Inhibitors Are Not Used?

    Get PDF

    Measurement of the Background Activities of a 100Mo-enriched powder sample for AMoRE crystal material using a single high purity germanium detector

    Full text link
    The Advanced Molybdenum-based Rare process Experiment (AMoRE) searches for neutrino-less double-beta (0{\nu}\b{eta}\b{eta}) decay of 100Mo in enriched molybdate crystals. The AMoRE crystals must have low levels of radioactive contamination to achieve low background signals with energies near the Q-value of the 100Mo 0{\nu}\b{eta}\b{eta} decay. To produce low-activity crystals, radioactive contaminants in the raw materials used to form the crystals must be controlled and quantified. 100EnrMoO3 powder, which is enriched in the 100Mo isotope, is of particular interest as it is the source of 100Mo in the crystals. A high-purity germanium detector having 100% relative efficiency, named CC1, is being operated in the Yangyang underground laboratory. Using CC1, we collected a gamma spectrum from a 1.6-kg 100EnrMoO3 powder sample enriched to 96.4% in 100Mo. Activities were analyzed for the isotopes 228Ac, 228Th, 226Ra, and 40K. They are long-lived naturally occurring isotopes that can produce background signals in the region of interest for AMoRE. Activities of both 228Ac and 228Th were < 1.0 mBq/kg at 90% confidence level (C.L.). The activity of 226Ra was measured to be 5.1 \pm 0.4 (stat) \pm 2.2 (syst) mBq/kg. The 40K activity was found as < 16.4 mBq/kg at 90% C.L.Comment: 20 pages, 6 figures, 5 table

    A facility for mass production of ultra-pure NaI powder for the COSINE-200 experiment

    Full text link
    COSINE-200 is the next phase of the ongoing COSINE-100 experiment. The main purpose of the experiment is the performance of an unambiguous verification of the annual modulation signals observed by the DAMA experiment. The success of the experiment critically depends on the production of a 200 kg array of ultra-pure NaI(Tl) crystal detectors that have lower backgrounds than the DAMA crystals. The purification of raw powder is the initial but important step toward the production of ultra-pure NaI(Tl) detectors. We have already demonstrated that fractional recrystallization from water solutions is an effective method for the removal of the problematic K and Pb elements. For the mass production of purified powder, a clean facility for the fractional recrystallization had been constructed at the Institute for Basic Science (IBS), Korea. Here, we report the design of the purification process, material recovery, and performance of the NaI powder purification facility.Comment: Proceeding for INSTR20, accepted in JINS

    Variant Achalasia: A New Category of the Chicago Classification Published in 2011

    Get PDF

    Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    Get PDF
    Over the last several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally because of limitations in the available visualization techniques and the complexity of the phenomena. To overcome these limitations and elucidate the CHF enhancement mechanism on the structured surfaces, we introduce synchrotron x-ray imaging with high spatial (similar to 2 mu m) and temporal (similar to 20,000 Hz) resolutions. This technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.11Ysciescopu

    Inhibitory Potencies of Several Iridoids on Cyclooxygenase-1, Cyclooxygnase-2 Enzymes Activities, Tumor Necrosis factor-α and Nitric Oxide Production In Vitro

    Get PDF
    To verify the anti-inflammatory potency of iridoids, seven iridoid glucosides (aucubin, catalpol, gentiopicroside, swertiamarin, geniposide, geniposidic acid and loganin) and an iridoid aglycone (genipin) were investigated with in vitro testing model systems based on inhibition of cyclooxygenase (COX)-1/-2 enzymes, the tumor necrosis factor-α (TNF-α) formation and nitric oxide (NO) production. The hydrolyzed-iridoid products (H-iridoid) with β-gludosidase treatment only showed inhibitory activities, and revealed different potencies, depending on their chemical structures. Without the β-gludosidase treatment, no single iridoid glycoside exhibited any activities. The aglycone form (genipin) also did not show inhibitory activities. To compare anti-inflammatory potency, the inhibitory concentrations (IC50) in each testing system were measured. The hydrolyzed-aucubin product (H-aucubin) with β-gludosidase treatment showed a moderate inhibition on COX-2 with IC50 of 8.83 μM, but much less inhibition (IC50, 68.9 μM) on COX-1 was noted. Of the other H-iridoid products, the H-loganin and the H-geniposide exhibited higher inhibitory effects on COX-1, revealing IC50 values of 3.55 and 5.37 μM, respectively. In the case of TNF-α assay, four H-iridoid products: H-aucubin, H-catalpol, H-geniposide and H-loganin suppressed the TNF-α formation with IC50 values of 11.2, 33.3, 58.2 and 154.6 μM, respectively. But other H-iridoid products manifested no significant activity. Additional experiments on NO production were conducted. We observed that only the H-aucubin exhibited a significant suppression with IC50 value of 14.1 μM. Genipin, an agycone form, showed no inhibitory effects on all testing models, implying the hydrolysis of the glycosidic bond of iridoid glycoside is a pre-requisite step to produce various biological activities
    corecore