15 research outputs found

    Role of age in dynamics of autoantibodies in pediatric celiac disease

    Get PDF
    Background. Celiac disease (CD) is characterized by elevated serum titers of autoantibodies IgA anti-tissue transglutaminase 2 (TGA-IgA) and IgA anti-endomysial (EMA), with small bowel mucosa atrophy. We evaluated age differences between CD children exhibiting variable antibody titers at diagnosis.MethodsCD children diagnosed between January 2014 and June 2019, according to 2012 ESPGHAN guidelines were studied. All had EMA and TGA-IgA measurements, while a proportion of them underwent esophagogastroduodenoscopy (EGD). Patients were grouped based on serum TGA-IgA titers normalized to the upper limit of normal (ULN) and differences in median age (years) assessed by analysis of variance (ANOVA) and creation of orthogonal contrasts.ResultsCD was diagnosed in 295 subjects (median age: 4.4 [IQR: 2.60-8.52]) with a biopsy sparing protocol (high titer: >= 10xULN) and in 204 by EGD biopsy. Of the latter, 142 (median age: 8.5 [IQR: 5.81-11.06]) and 62 (median age: 9.5 [IQR: 6.26-12.76]) had a low (< 5xULN) and a moderate (>= 5 < 10xULN) TGA-IgA titer, respectively. Potential CD was diagnosed in 20 patients (median age: 3.6 [IQR: 2.47-6.91]). The median age was significantly lower in the no-biopsy group (ANOVA: F-(3,F- 516) = 25.98, p < .001) than in low- and moderate titer groups (p < 0.0001), while there was no statistical difference between biopsy-sparing and potential CD groups.ConclusionCD patients with greatly elevated antibody titers (>= 10xULN) were diagnosed at an earlier age than those with lower titers. This may indicate that an increase in TGA-IgA is independent of age and suggests a polarization of autoimmunity in younger individuals with higher serum antibody levels

    Association between elevated TGA-IgA titers and older age at diagnosis with absence of HBV seroconversion in celiac children

    Get PDF
    Patients with celiac disease can have a low rate of protective hepatitis B (HBV) antibody titers after vaccination. We aimed to evaluate the HBV seroconversion in celiac disease (CD) children at the time of diagnosis as well as to identify the presence of possible predictive factors. Celiac disease children were prospectively enrolled and tested for antibodies against the S protein of HBV (HBsAg) at time of diagnosis between January 2009 and February 2020. Based on the serologic response to the vaccine, “responders” and “non-responders” were identified. Statistical analysis has been performed through R statistical software (3.5.1 version, R core Team) Of 96 CD children evaluated, 41.7% (n = 40) showed non-protective or absent antibody titers against HBV. Elevated IgA-antibodies against transglutaminase 2 (TGA-IgA) values and older age at diagnosis were associated with an absent seroconversion to HBV vaccine, while presenting symptoms were not significant. An elevated prevalence of absent seroconversion to HBV vaccine exists in this cohort of CD patients at the time of disease diagnosis. Elevated TGA-IgA titers and older age at diagnosis seem to negatively predict seroconversion. Further studies are needed to identify the real profile of “non-responders”, aiming to organize surveillance and eventual revaccination strategy

    BAL Proteomic Signature of Lung Adenocarcinoma in IPF Patients and Its Transposition in Serum Samples for Less Invasive Diagnostic Procedures

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a form of chronic and irreversible fibrosing interstitial pneumonia of unknown etiology. Although antifibrotic treatments have shown a reduction of lung function decline and a slow disease progression, IPF is characterize by a very high mortality. Emerging evidence suggests that IPF increases the risk of lung carcinogenesis. Both diseases show similarities in terms of risk factors, such as history of smoking, concomitant emphysema, and viral infections, besides sharing similar pathogenic pathways. Lung cancer (LC) diagnosis is often difficult in IPF patients because of the diffuse lung injuries and abnormalities due to the underlying fibrosis. This is reflected in the lack of optimal therapeutic strategies for patients with both diseases. For this purpose, we performed a proteomic study on bronchoalveolar lavage fluid (BALF) samples from IPF, LC associated with IPF (LC-IPF) patients, and healthy controls (CTRL). Molecular pathways involved in inflammation, immune response, lipid metabolism, and cell adhesion were found for the dysregulated proteins in LC-IPF, such as TTHY, APOA1, S10A9, RET4, GDIR1, and PROF1. The correlation test revealed a relationship between inflammation- and lipid metabolism-related proteins. PROF1 and S10A9, related to inflammation, were up-regulated in LC-IPF BAL and serum, while APOA1 and APOE linked to lipid metabolism, were highly abundant in IPF BAL and low abundant in IPF serum. Given the properties of cytokine/adipokine of the nicotinamide phosphoribosyltransferase, we also evaluated its serum abundance, highlighting its down-regulation in LC-IPF. Our retrospective analyses of BAL samples extrapolated some potential biomarkers of LC-IPF useful to improve the management of these contemporary pathologies. Their differential abundance in serum samples permits the measurement of these potential biomarkers with a less invasive procedure

    Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Get PDF
    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway

    Methylmercury upregulates RE-1 silencing transcription factor (REST) in SH-SY5Y cells and mouse cerebellum

    Get PDF
    Methylmercury (MeHg) is a highly neurotoxic compound that, in adequate doses, can cause damage to the brain, including developmental defects and in severe cases cell death. The RE-1-silencing transcription factor (REST) has been found to be involved in the neurotoxic effects of environmental pollutants such as polychlorinated biphenyls (PCBs). In this study, we investigated the effects of MeHg treatment on REST expression and its role in MeHg-induced neurotoxicity in neuroblastoma SH-SY5Y cells. We found that MeHg exposure caused a dose- and time- dependent apoptotic cell death, as evidenced by the appearance of apoptotic hallmarks including caspase-3 processing and annexin V uptake. Moreover, MeHg increased REST gene and gene product expression. MeHg-induced apoptotic cell death was completely abolished by REST knockdown. Interestingly, MeHg (1. μM/24. h) increased the expression of REST Corepressor (Co-REST) and its binding with REST whereas the other REST cofactor mammalian SIN3 homolog A transcription regulator (mSin3A) was not modified. In addition, we demonstrated that the acetylation of histone protein H4 was reduced after MeHg treatment and was critical for MeHg-induced apoptosis. Accordingly, the pan-histone deacetylase inhibitor trichostatin-A (TSA) prevented MeHg-induced histone protein H4 deacetylation, thereby reverting MeHg-induced neurotoxic effect. Male mice subcutaneously injected with 10 mg/kg of MeHg for 10 days showed an increase in REST expression in the granule cell layer of the cerebellum together with a decrease in histone H4 acetylation. Collectively, we demonstrated that methylmercury exposure can cause neurotoxicity by activating REST gene expression and H4 deacetylation

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    Systemic Corticosteroids for Treating Respiratory Diseases: Less Is Better, but… When and How Is It Possible in Real Life?

    No full text
    Abstract Systemic corticosteroids (CSs), a keystone in pulmonology, are drugs with strong antiinflammatory activity. They are cheap, easily available, and accessible, but with common and serious side effects. Moreover, the use of exogenous CSs may suppress the hypothalamic–pituitary–adrenal (HPA) axis, predisposing to adrenal insufficiency. Safe CS treatment is a challenge of pharmacological research. This narrative review examined the indications of CSs in some respiratory diseases, analyzing what types, dosages, and length of treatment are required as the dosage and duration of CS treatments need to be minimized. Chronic maintenance treatments with CSs are associated with poor prognosis, but they are still prescribed in patients with severe asthma, Chronic obstructive pulmonary disease (COPD), and interstitial lung diseases. When CS discontinuation is not possible, all efforts should be made to achieve clinically meaningful reductions. Guidelines suggest the use of methylprednisolone at a dose of 20–40 mg/day or equivalent for up to 10 days in subjects with COVID-19 pneumonia (but not other respiratory viral diseases) and respiratory failure, exacerbations of asthma, and COPD. Some guidelines suggest that CS treatment shorter than 10–14 days can be abruptly stopped, strictly monitoring subjects with unexplained symptoms after CS withdrawal, who should promptly be tested for adrenal insufficiency (AI) and eventually treated. CSs are often used in severe community-acquired pneumonia associated with markedly increased serum inflammation markers, in acute respiratory distress syndrome (ARDS), in septic shock unresponsive to hydro-saline replenishment and vasopressors, and acute exacerbations of interstitial lung diseases. As these cases often require higher doses and longer duration of CS treatment, CS tapering should be gradual and, when useful, supported by an evaluation of HPA axis function

    BAL Proteomic Signature of Lung Adenocarcinoma in IPF Patients and Its Transposition in Serum Samples for Less Invasive Diagnostic Procedures

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a form of chronic and irreversible fibrosing interstitial pneumonia of unknown etiology. Although antifibrotic treatments have shown a reduction of lung function decline and a slow disease progression, IPF is characterize by a very high mortality. Emerging evidence suggests that IPF increases the risk of lung carcinogenesis. Both diseases show similarities in terms of risk factors, such as history of smoking, concomitant emphysema, and viral infections, besides sharing similar pathogenic pathways. Lung cancer (LC) diagnosis is often difficult in IPF patients because of the diffuse lung injuries and abnormalities due to the underlying fibrosis. This is reflected in the lack of optimal therapeutic strategies for patients with both diseases. For this purpose, we performed a proteomic study on bronchoalveolar lavage fluid (BALF) samples from IPF, LC associated with IPF (LC-IPF) patients, and healthy controls (CTRL). Molecular pathways involved in inflammation, immune response, lipid metabolism, and cell adhesion were found for the dysregulated proteins in LC-IPF, such as TTHY, APOA1, S10A9, RET4, GDIR1, and PROF1. The correlation test revealed a relationship between inflammation- and lipid metabolism-related proteins. PROF1 and S10A9, related to inflammation, were up-regulated in LC-IPF BAL and serum, while APOA1 and APOE linked to lipid metabolism, were highly abundant in IPF BAL and low abundant in IPF serum. Given the properties of cytokine/adipokine of the nicotinamide phosphoribosyltransferase, we also evaluated its serum abundance, highlighting its down-regulation in LC-IPF. Our retrospective analyses of BAL samples extrapolated some potential biomarkers of LC-IPF useful to improve the management of these contemporary pathologies. Their differential abundance in serum samples permits the measurement of these potential biomarkers with a less invasive procedure

    The miR206-JunD circuit mediates the neurotoxic effect of methylmercury in cortical neurons

    No full text
    Methylmercury (MeHg) causes neuronal death through different pathways. Particularly, we found that in cortical neurons it increased the expression of Repressor Element-1 Silencing Transcription Factor (REST), Histone Deacetylase (HDAC)4, Specificity Protein (Sp)1, Sp4 and reduced the levels of Brain-Derived Neurotrophic Factor (BDNF). Herein, in rat cortical neurons we investigated whether microRNA (miR)206 can modulate MeHg-induced cell death by regulating REST/HDAC4/Sp1/Sp4/BDNF axis. MeHg (1µM) reduced miR206 expression after both 12 and 24 hours and miR206 transfection prevented MeHg-induced neuronal death. Furthermore, miR206 reverted MeHg-induced REST and Sp4 increase and BDNF reduction at gene and protein level, and reverted HDAC4 protein increase, but not HDAC4 mRNA up-regulation. Moreover, since no miR206 seed sequences were identified in the 3'-untranslated regions (3'-UTR) of REST and SP4, we investigated the role of JunD, that presents a consensus motif on REST, Sp4 and BDNF promoters. Indeed, MeHg increased JunD mRNA and protein levels, and JunD knockdown counteracted MeHg-induced REST, Sp4 increase, but not BDNF reduction. Furthermore, we identified a miR206 binding site in the 3'-UTR of JunD mRNA (miR206/JunD) and mutagenesis of miR206/JunD site reverted JunD luciferase activity reduction induced by miR206. Finally, miR206 prevented MeHg-increased JunD binding to REST and Sp4 promoters, and MeHg-reduced BDNF expression was determined by the increase of HDAC4 binding on BDNF promoter IV. Collectively, these results suggest that miR206 down-regulation induced by MeHg exposure determines an up-regulation of HDAC4, that in turn down-regulated BDNF, and the activation of JunD that, by binding REST and Sp4 gene promoters, increased their expression

    MC1568 Inhibits Thimerosal-Induced Apoptotic Cell Death by Preventing HDAC4 Up-Regulation in Neuronal Cells and in Rat Prefrontal Cortex

    No full text
    Ethylmercury thiosalicylate (thimerosal) is an organic mercury-based compound commonly used as an antimicrobial preservative that has been found to be neurotoxic. In contrast, histone deacetylases (HDACs) inhibition has been found to be neuroprotective against several environmental contaminants, such as polychlorinated biphenyls, di-2-ethylhexyl phthalate, and methylmercury. The aim of this study was to investigate the effect of HDAC inhibition on thimerosal-induced neurotoxicity in neuroblastoma cells and cortical neurons. Interestingly, we found that thimerosal, at 0.5 μM in SH-SY5Y cells and at 1 μM in neurons, caused cell death by activation of apoptosis, which was prevented by the HDAC class IIA inhibitor MC1568 but not the class I inhibitor MS275. Furthermore, thimerosal specifically increased HDAC4 protein expression but not that of HDACs 5, 6, 7, and 9. Western blot analysis revealed that MC1568 prevented thimerosal-induced HDAC4 increase. In addition, both HDAC4 knocking-down and MC1568 inhibited thimerosal-induced cell death in SH-SY5Y cells and cortical neurons. Importantly, intramuscular injection of 12 μg/kg thimerosal on postnatal days 7, 9, 11, and 15 increased HDAC4 levels in the prefrontal cortex (PFC), which decreased histone H4 acetylation in infant male rats, in parallel increased motor activity changes. In addition, coadministration of 40 mg/kg MC1568 (intraperitoneal injection) moderated the HDAC4 increase which reduced histone H4 deacetylation and caspase-3 cleavage in the PFC. Finally, open-field testing showed that thimerosal-induced motor activity changes are reduced by MC1568. These findings indicate that HDAC4 regulates thimerosal-induced cell death in neurons and that treatment with MC1568 prevents thimerosal-induced activation of caspase-3 in the rat PFC
    corecore