54 research outputs found

    What is the Shell Around R Coronae Borealis?

    Full text link
    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R CrB, itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. 1) they are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, 2) they are material left over from a white-dwarf merger event which formed the RCB stars, or 3) they are material lost from the star during the RCB phase. Arecibo 21-cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of \lesssim0.3 M_{\odot}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a white-dwarf merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star's RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for \sim104^{4} yr.Comment: 5 pages, 2 figures, 2 tables, Accepted for publication in A

    The Identification of Extreme Asymptotic Giant Branch Stars and Red Supergiants in M33 by 24 {\mu}m Variability

    Get PDF
    We present the first detection of 24 {\mu}m variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of MIPS observations, which are irregularly spaced over ~750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the sub-mm to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars; while the remaining source is the Giant HII region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8 ±\pm 0.9) x 104^4 L_\odot and a total DPR of (2.3 ±\pm 0.1) x 105^{-5} M_\odot yr1^{-1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely "extreme" AGB (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (Mbol_{\rm bol} 54,000 L_\odot), which classifies them as probably red supergiants (RSGs). Almost all of the sources are classified as oxygen rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.Comment: 36 pages, 14 figures, 4 tables, Accepted for publication in A

    The Double Dust Envelopes of R Coronae Borealis Stars

    Get PDF
    The study of extended, cold dust envelopes surrounding R Coronae Borealis (RCB) stars began with their discovery by the Infrared Astronomical Satellite. RCB stars are carbon-rich supergiants characterized by their extreme hydrogen deficiency and their irregular and spectacular declines in brightness (up to 9 mag). We have analyzed new and archival Spitzer Space Telescope and Herschel Space Observatory data of the envelopes of seven RCB stars to examine the morphology and investigate the origin of these dusty shells. Herschel, in particular, has revealed the first-ever bow shock associated with an RCB star with its observations of SU Tauri. These data have allowed the assembly of the most comprehensive spectral energy distributions (SEDs) of these stars with multiwavelength data from the ultraviolet to the submillimeter. Radiative transfer modeling of the SEDs implies that the RCB stars in this sample are surrounded by an inner warm (up to 1200 K) and an outer cold (up to 200 K) envelope. The outer shells are suggested to contain up to 10-3 M o of dust and have existed for up to 105 years depending on the expansion rate of the dust. This age limit indicates that these structures have most likely been formed during the RCB phase

    High-resolution SOFIA/EXES Spectroscopy of Water Absorption Lines in the Massive Young Binary W3 IRS 5

    Get PDF
    We present in this paper mid-infrared (5-8~μ\mum) spectroscopy toward the massive young binary W3~IRS~5, using the EXES spectrometer in high-resolution mode (RR\sim50,000) from the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA). Many (\sim180) ν2\nu_2=1--0 and (\sim90) ν2\nu_2=2-1 absorption rovibrational transitions are identified. Two hot components over 500 K and one warm component of 190 K are identified through Gaussian fittings and rotation diagram analysis. Each component is linked to a CO component identified in the IRTF/iSHELL observations (RR=88,100) through their kinematic and temperature characteristics. Revealed by the large scatter in the rotation diagram, opacity effects are important, and we adopt two curve-of-growth analyses, resulting in column densities of 1019\sim10^{19} cm2^{-2}. In one analysis, the model assumes a foreground slab. The other assumes a circumstellar disk with an outward-decreasing temperature in the vertical direction. The disk model is favored because fewer geometry constraints are needed, although this model faces challenges as the internal heating source is unknown. We discuss the chemical abundances along the line of sight based on the CO-to-H2_2O connection. In the hot gas, all oxygen not locked in CO resides in water. In the cold gas, we observe a substantial shortfall of oxygen and suggest that the potential carrier could be organics in solid ice.Comment: Accepted for publication in ApJ. 34 pages, 13 figures, and 14 tables. Comments are more than welcome

    SimCol3D -- 3D Reconstruction during Colonoscopy Challenge

    Full text link
    Colorectal cancer is one of the most common cancers in the world. While colonoscopy is an effective screening technique, navigating an endoscope through the colon to detect polyps is challenging. A 3D map of the observed surfaces could enhance the identification of unscreened colon tissue and serve as a training platform. However, reconstructing the colon from video footage remains unsolved due to numerous factors such as self-occlusion, reflective surfaces, lack of texture, and tissue deformation that limit feature-based methods. Learning-based approaches hold promise as robust alternatives, but necessitate extensive datasets. By establishing a benchmark, the 2022 EndoVis sub-challenge SimCol3D aimed to facilitate data-driven depth and pose prediction during colonoscopy. The challenge was hosted as part of MICCAI 2022 in Singapore. Six teams from around the world and representatives from academia and industry participated in the three sub-challenges: synthetic depth prediction, synthetic pose prediction, and real pose prediction. This paper describes the challenge, the submitted methods, and their results. We show that depth prediction in virtual colonoscopy is robustly solvable, while pose estimation remains an open research question

    High-resolution SOFIA/EXES Spectroscopy of SO_2 Gas in the Massive Young Stellar Object MonR2 IRS3: Implications for the Sulfur Budget

    Get PDF
    Sulfur has been observed to be severely depleted in dense clouds leading to uncertainty in the molecules that contain it and the chemistry behind their evolution. Here, we aim to shed light on the sulfur chemistry in young stellar objects (YSOs) by using high-resolution infrared spectroscopy of absorption by the ν_3 rovibrational band of SO_2 obtained with the Echelon-Cross-Echelle Spectrograph on the Stratospheric Observatory for Infrared Astronomy. Using local thermodynamic equilibrium models we derive physical parameters for the SO_2 gas in the massive YSO MonR2 IRS3. This yields a SO_2/H abundance lower limit of 5.6 ± 0.5 × 10^(−7), or >4% of the cosmic sulfur budget, and an intrinsic line width (Doppler parameter) of b < 3.20 km s^(−1). The small line widths and high temperature (T_(ex) = 234 ± 15 K) locate the gas in a relatively quiescent region near the YSO, presumably in the hot core where ices have evaporated. This sublimation unlocks a volatile sulfur reservoir (e.g., sulfur allotropes as detected abundantly in comet 67P/Churyumov–Gerasimenko), which is followed by SO_2 formation by warm, dense gas-phase chemistry. The narrowness of the lines makes formation of SO_2 from sulfur sputtered off grains in shocks less likely toward MonR2 IRS3

    Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice

    Get PDF
    IMPORTANCE: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. OBJECTIVE: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. EXPOSURES: Genetic test results. MAIN OUTCOMES AND MEASURES: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. RESULTS: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes

    Sofia-exes observations of betelgeuse during the great dimming of 2019/2020

    No full text
    In 2019 October Betelgeuse began a decline in V-band brightness that went beyond the minimum expected from its quasi-periodic ∼420 day cycle, becoming the faintest in recorded photometric history. Observations obtained in 2019 December with Very Large Telescope/SPHERE have shown that the southern half of the star has become markedly fainter than in 2019 January, indicating that a major change has occurred in, or near, the photosphere. We present Stratospheric Observatory for Infrared Astronomy (SOFIA) Echelon Cross Echelle Spectrograph (EXES) high spectral-resolution observations of [Fe II] 25.99 μm and [S I] 25.25 μm emission lines from Betelgeuse obtained during the unprecedented 2020 February V-band brightness minimum to investigate potential changes in the circumstellar flow. These spectra are compared to observations obtained in 2015 and 2017 when the V magnitude was typical of brighter phases. We find only very small changes in the gas velocities reflected by either of the line profiles, no significant changes in the flux to continuum ratios, and hence no significant changes in the [Fe ii]/[S i] flux ratios. There is evidence that absorption features have appeared in the 2020 continuum. The Alfvén wave-crossing time from the upper photosphere is sufficiently long that one would not expect a change in the large-scale magnetic field to reach the circumstellar [Fe ii] and [S i] line-forming regions, 3 20R ∗, where significant circumstellar oxygen-rich dust is observed
    corecore