25 research outputs found

    Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    Get PDF
    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis

    Three-dimensional ultrastructural and immunohistochemical study of immature neurons in the subgranular zone of the rat dentate gyrus

    No full text
    The present study is devoted to three dimensional ultrastructural organization of mitotically dividing immature neurons in dentate gyrus using biophysical approaches. In adult vertebrate brain, cell proliferation persists throughout life mainly in dentate gyrus of the hippocampus (DG) and olfactory bulb. Neurogenesis has been demonstrated using tagged thymidine analogues incorporated into the S phase of the cell cycle, but these may also detect repaired DNA in postmitotic neurons. Recent retroviral labelling has shown that neuronal progenitors/neuroblasts divide and produce functional neurons. Providing ultrastructural evidence of mitotically active cells has proven problematical, not only because of technical issues of identifying dividing cells at electron microscope level, but also because it is difficult to demonstrate unequivocally that neurons identified in the electron microscope are really post mitotic. However by characterising post mitotic cells labelled with BrdU and doublecortin and comparing these with post mitotic cells reconstructed in 3 dimensions from ultrathin serial sections, we have been able to illustrate individual mitotic elements and phases of cells within the GC layer of adult rat dentate gyrus. Here we show dividing cells in metaphase within clusters of immature GCs in subgranular zone (SGZ). These reconstructions provide ultrastructural confirmation that cells expressing doublecortin (DCX), a microtubule associated protein expressed in migrating neurons, localize as clusters in the subgranular zone (SGZ) of dentate gyrus (DG) in the hippocampus during all animal life. Such DG cells with clear synaptic specializations, somatic spines and basal dendrites are exclusive to immature GC that appear to reenter the cell cycle, suggesting the possibility that newly generated neurons within the DG might arise not only from precursors, but also from clusters of immature GC
    corecore