4,203 research outputs found
Radio emission from SNe and young SNRs
Study of radio supernovae (RSNe), the earliest stages of supernova remnant (SNR) formation, over the past 20 years includes two dozen detected objects and more than 100 upper limits. From this work we are able to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. More speculatively, it may be possible to provide distance estimates to RSNe
TYC 8380-1953-1: Discovery of an RS CVn binary through the XMM-Newton slew survey
In this paper we report the discovery of the chromospherically active (RS CVn
type) binary TYC 8380-1953-1 through the XMM-Newton slew survey and present
results of our optical and X-ray follow-up. With a flux limit of erg cm s in the soft band ( keV), the
XMM-Newton slew has a similar sensitivity to the ROSAT All Sky Survey allowing
interesting sources to be identified by their long-term variability. Two
different types of stellar sources are detected in shallow X-ray surveys: young
stars (both pre-main and main sequence stars) and chromospherically active
binaries (BY Dra and RS CVn type systems). The discovery of stars in such
surveys and the study of their nature through optical follow-ups is valuable to
determine their spatial distribution and scale height in the Galaxy. Our
analysis shows that TYC 8380-1953-1 is a double-lined spectroscopic binary with
both components having similar spectral type (likely K0/2+K3/5) and luminosity.
With a typical coronal temperature for an RS CVn system ( keV)
and an X-ray luminosity in the keV energy band higher than erg\,s, TYC 8380-1953-1 lies among the most X-ray luminous RS
CVn binaries.Comment: Accepted for publication in the PASP. 18 pages, 10 figure
Application of the RMF mass model to the r-process and the influence of mass uncertainties
A new mass table calculated by the relativistic mean field approach with the
state-dependent BCS method for the pairing correlation is applied for the first
time to study r-process nucleosynthesis. The solar r-process abundance is well
reproduced within a waiting-point approximation approach. Using an exponential
fitting procedure to find the required astrophysical conditions, the influence
of mass uncertainty is investigated. R-process calculations using the FRDM,
ETFSI-Q and HFB-13 mass tables have been used for that purpose. It is found
that the nuclear physical uncertainty can significantly influence the deduced
astrophysical conditions for the r-process site. In addition, the influence of
the shell closure and shape transition have been examined in detail in the
r-process simulations.Comment: to be published in Phys. Rev. C, 22 pages, 9 figure
Recommended from our members
Testing linearity against threshold effects: uniform inference in quantile regression
This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models
Nucleosynthesis in the Early Galaxy
Recent observations of r-process-enriched metal-poor star abundances reveal a
non-uniform abundance pattern for elements . Based on non-correlation
trends between elemental abundances as a function of Eu-richness in a large
sample of metal-poor stars, it is shown that the mixing of a consistent and
robust light element primary process (LEPP) and the r-process pattern found in
r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we
derive the abundance pattern of the LEPP from observation and show that it is
consistent with a missing component in the solar abundances when using a recent
s-process model. As the astrophysical site of the LEPP is not known, we explore
the possibility of a neutron capture process within a site-independent
approach. It is suggested that scenarios with neutron densities
or in the range best
explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical
Journa
Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN
We report the observation of ferromagnetism at over 900K in Cr-GaN and Cr-AlN
thin films. The saturation magnetization moments in our best films of Cr-GaN
and Cr-AlN at low temperatures are 0.42 and 0.6 u_B/Cr atom, respectively,
indicating that 14% and 20%, of the Cr atoms, respectively, are magnetically
active. While Cr-AlN is highly resistive, Cr-GaN exhibits thermally activated
conduction that follows the exponential law expected for variable range hopping
between localized states. Hall measurements on a Cr-GaN sample indicate a
mobility of 0.06 cm^2/V.s, which falls in the range characteristic of hopping
conduction, and a free carrier density (1.4E20/cm^3), which is similar in
magnitude to the measured magnetically-active Cr concentration (4.9E19/cm^3). A
large negative magnetoresistance is attributed to scattering from loose spins
associated with non-ferromagnetic impurities. The results indicate that
ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange
mechanism as a result of hopping between near-midgap substitutional Cr impurity
bands.Comment: 14 pages, 4 figures, submitted to AP
- …