3 research outputs found

    Lightweight Acquisition and Ranging of Flows in the Data Plane

    Get PDF
    As networks get more complex, the ability to track almost all the flows is becoming of paramount importance. This is because we can then detect transient events impacting only a subset of the traffic. Solutions for flow monitoring exist, but it is getting very difficult to produce accurate estimations for every tuple given the memory constraints of commodity programmable switches. Indeed, as networks grow in size, more flows have to be tracked, increasing the number of tuples to be recorded. At the same time, end-host virtualization requires more specific flowIDs, enlarging the memory cost for every single entry. Finally, the available memory resources have to be shared with other important functions as well (e.g., load balancing, forwarding, ACL). To address those issues, we present FlowLiDAR (Flow Lightweight Detection and Ranging), a new solution that is capable of tracking almost all the flows in the network while requiring only a modest amount of data plane memory which is not dependent on the size of flowIDs. We implemented the scheme in P4, tested it using real traffic from ISPs and compared it against four state-of-the-art solutions: FlowRadar, NZE, PR-sketch, and Elastic Sketch. While those can only reconstruct up to 60% of the tuples, FlowLiDAR can track 98.7% of them with the same amount of memory

    Lightweight Acquisition and Ranging of Flows in the Data Plane

    No full text
    As networks get more complex, the ability to track almost all the flows is becoming of paramount importance. This is because we can then detect transient events impacting only a subset of the traffic. Solutions for flow monitoring exist, but it is getting very difficult to produce accurate estimations for every tuple given the memory constraints of commodity programmable switches. Indeed, as networks grow in size, more flows have to be tracked, increasing the number of tuples to be recorded. At the same time, end-host virtualization requires more specific flowIDs, enlarging the memory cost for every single entry. Finally, the available memory resources have to be shared with other important functions as well (e.g., load balancing, forwarding, ACL). To address those issues, we present FlowLiDAR (Flow Lightweight Detection and Ranging), a new solution that is capable of tracking almost all the flows in the network while requiring only a modest amount of data plane memory which is not dependent on the size of flowIDs. We implemented the scheme in P4, tested it using real traffic from ISPs and compared it against four state-of-the-art solutions: FlowRadar, NZE, PR-sketch, and Elastic Sketch. While those can only reconstruct up to 60% of the tuples, FlowLiDAR can track 98.7% of them with the same amount of memory

    Can a chest HRCT-based crash course on COVID-19 cases make inexperienced thoracic radiologists readily available to face the next pandemic?

    No full text
    Objective: To test the inter-reader agreement in assessing lung disease extent, HRCT signs, and Radiological Society of North America (RSNA) categorization between a chest-devoted radiologist (CR) and two HRCT-naïve radiology residents (RR1 and RR2) after the latter attended a COVID-19-based chest high-resolution computed tomography (HRCT) “crash course”. Methods: The course was built by retrospective inclusion of 150 patients who underwent HRCT for COVID-19 pneumonia between November 2020 and January 2021. During a first 10-days-long “training phase”, RR1 and RR2 read a pool of 100/150 HRCTs, receiving day-by-day access to CR reports as feedback. In the subsequent 2-days-long “test phase”, they were asked to report 50/150 HRCTs with no feedback. Test phase reports of RR1/RR2 were then compared with CR using unweighted or linearly-weighted Cohen's kappa (k) statistic and intraclass correlation coefficient (ICC). Results: We observed almost perfect agreement in assessing disease extent between RR1-CR (k = 0.83, p < 0.001) and RR2-CR (k = 0.88, p < 0.001). The agreement between RR1-CR and RR2-CR on consolidation, crazy paving pattern, organizing pneumonia (OP) pattern, and pulmonary artery (PA) diameter was substantial (k = 0.65 and k = 0.68), moderate (k = 0.42 and k = 0.51), slight (k = 0.10 and k = 0.20), and good-to-excellent (ICC = 0.87 and ICC = 0.91), respectively. The agreement in providing RSNA categorization was moderate for R1 versus CR (k = 0.56) and substantial for R2 versus CR (k = 0.67). Conclusion: HRCT-naïve readers showed an acceptable overall agreement with CR, supporting the hypothesis that a crash course can be a tool to readily make non-subspecialty radiologists available to cooperate in reading high burden of HRCT examinations during a pandemic/epidemic
    corecore