20 research outputs found
Prediction of postoperative patient deterioration and unanticipated intensive care unit admission using perioperative factors
BACKGROUND AND OBJECTIVES: Currently, no evidence-based criteria exist for decision making in the post anesthesia care unit (PACU). This could be valuable for the allocation of postoperative patients to the appropriate level of care and beneficial for patient outcomes such as unanticipated intensive care unit (ICU) admissions. The aim is to assess whether the inclusion of intra- and postoperative factors improves the prediction of postoperative patient deterioration and unanticipated ICU admissions. METHODS: A retrospective observational cohort study was performed between January 2013 and December 2017 in a tertiary Dutch hospital. All patients undergoing surgery in the study period were selected. Cardiothoracic surgeries, obstetric surgeries, catheterization lab procedures, electroconvulsive therapy, day care procedures, intravenous line interventions and patients under the age of 18 years were excluded. The primary outcome was unanticipated ICU admission. RESULTS: An unanticipated ICU admission complicated the recovery of 223 (0.9%) patients. These patients had higher hospital mortality rates (13.9% versus 0.2%, p<0.001). Multivariable analysis resulted in predictors of unanticipated ICU admissions consisting of age, body mass index, general anesthesia in combination with epidural anesthesia, preoperative score, diabetes, administration of vasopressors, erythrocytes, duration of surgery and post anesthesia care unit stay, and vital parameters such as heart rate and oxygen saturation. The receiver operating characteristic curve of this model resulted in an area under the curve of 0.86 (95% CI 0.83-0.88). CONCLUSIONS: The prediction of unanticipated ICU admissions from electronic medical record data improved when the intra- and early postoperative factors were combined with preoperative patient factors. This emphasizes the need for clinical decision support tools in post anesthesia care units with regard to postoperative patient allocation.</p
Evaluation of the image quality and validity of handheld echocardiography for stroke volume and left ventricular ejection fraction quantification:a method comparison study
Bedside quantification of stroke volume (SV) and left ventricular ejection fraction (LVEF) is valuable in hemodynamically compromised patients. Miniaturized handheld ultrasound (HAND) devices are now available for clinical use. However, the performance level of HAND devices for quantified cardiac assessment is yet unknown. The aim of this study was to compare the validity of HAND measurements with standard echocardiography (SE) and three-dimensional echocardiography (3DE). Thirty-six patients were scanned with HAND, SE and 3DE. LVEF and SV quantification was done with automated software for the HAND, SE and 3DE dataset. The image quality of HAND and SE was evaluated by scoring segmental endocardial border delineation (2 = good, 1 = poor, 0 = invisible). LVEF and SV of HAND was evaluated against SE and 3DE using correlation and Bland-Altman analysis. The correlation, bias, and limits of agreement (LOA) between HAND and SE were 0.68 [0.46:0.83], 1.60% [- 2.18:5.38], and 8.84% [- 9.79:12.99] for LVEF, and 0.91 [0.84:0.96], 1.32 ml [- 0.36:4.01], 15.54 ml [- 18.70:21.35] for SV, respectively. Correlation, bias, and LOA between HAND and 3DE were 0.55 [0.6:0.74], - 0.56% [- 2.27:1.1], and 9.88% [- 13.29:12.17] for LVEF, and 0.79 [0.62:0.89], 6.78 ml [2.34:11.21], 12.14 ml [- 26.32:39.87] for SV, respectively. The image quality scores were 9.42 ± 2.0 for the apical four chamber views of the HAND dataset and 10.49 ± 1.7 for the SE dataset and (P < 0.001). Clinically acceptable accuracy, precision, and image quality was demonstrated for HAND measurements compared to SE. In comparison to 3DE, HAND showed a clinically acceptable accuracy and precision for LVEF quantification.</p
Evaluation of the image quality and validity of handheld echocardiography for stroke volume and left ventricular ejection fraction quantification:a method comparison study
Bedside quantification of stroke volume (SV) and left ventricular ejection fraction (LVEF) is valuable in hemodynamically compromised patients. Miniaturized handheld ultrasound (HAND) devices are now available for clinical use. However, the performance level of HAND devices for quantified cardiac assessment is yet unknown. The aim of this study was to compare the validity of HAND measurements with standard echocardiography (SE) and three-dimensional echocardiography (3DE). Thirty-six patients were scanned with HAND, SE and 3DE. LVEF and SV quantification was done with automated software for the HAND, SE and 3DE dataset. The image quality of HAND and SE was evaluated by scoring segmental endocardial border delineation (2 = good, 1 = poor, 0 = invisible). LVEF and SV of HAND was evaluated against SE and 3DE using correlation and Bland-Altman analysis. The correlation, bias, and limits of agreement (LOA) between HAND and SE were 0.68 [0.46:0.83], 1.60% [- 2.18:5.38], and 8.84% [- 9.79:12.99] for LVEF, and 0.91 [0.84:0.96], 1.32 ml [- 0.36:4.01], 15.54 ml [- 18.70:21.35] for SV, respectively. Correlation, bias, and LOA between HAND and 3DE were 0.55 [0.6:0.74], - 0.56% [- 2.27:1.1], and 9.88% [- 13.29:12.17] for LVEF, and 0.79 [0.62:0.89], 6.78 ml [2.34:11.21], 12.14 ml [- 26.32:39.87] for SV, respectively. The image quality scores were 9.42 ± 2.0 for the apical four chamber views of the HAND dataset and 10.49 ± 1.7 for the SE dataset and (P < 0.001). Clinically acceptable accuracy, precision, and image quality was demonstrated for HAND measurements compared to SE. In comparison to 3DE, HAND showed a clinically acceptable accuracy and precision for LVEF quantification.</p
Biplanar versus conventional two-dimensional ultrasound guidance for radial artery catheterisation
Background: Ultrasound guidance increases first-pass success rates and decreases the number of cannulation attempts and complications during radial artery catheterisation but it is debatable whether short-, long-, or oblique-axis imaging is superior for obtaining access. Three-dimensional (3D) biplanar ultrasound combines both short- and long-axis views with their respective benefits. This study aimed to determine whether biplanar imaging would improve the accuracy of radial artery catheterisation compared with conventional 2D imaging. Methods: This before-and-after trial included adult patients who required radial artery catheterisation for elective cardiothoracic surgery. The participating anaesthesiologists were experienced in 2D and biplanar ultrasound-guided vascular access. The primary endpoint was successful catheterisation in one skin break without withdrawals. Secondary endpoints were the numbers of punctures and withdrawals, scanning and procedure times, needle visibility, perceived mental effort of the operator, and posterior wall puncture or other mechanical complications. Results: From November 2021 until April 2022, 158 patients were included and analysed (2D=75, biplanar=83), with two failures to catheterise in each group. First-pass success without needle redirections was 58.7% in the 2D group and 60.2% in the biplanar group (difference=1.6%; 95% confidence interval [CI], –14.0%–17.1%; P=0.84), and first-pass success within one skin break was 77.3% in the 2D group vs 81.9% in the biplanar group (difference=4.6%; 95% CI, 8.1%–17.3%; P=0.473). None of the secondary endpoints differed significantly. Conclusions: Biplanar ultrasound guidance did not improve success rates nor other performance measures of radial artery catheterisation. The additional visual information acquired with biplanar imaging did not offer any benefit. Clinical trial registration: N9687 (Dutch Trial Register).</p
Rhabdomyolysis in MDMA intoxication:A rapid and underestimated killer. "clean" Ecstasy, a safe party drug?
Background: Ecstasy is a popular drug among young adults. It is often thought to be safe. The dose of methylenedioxymethamphetamine (MDMA) in a tablet of Ecstasy varies greatly, and there is also a difference in individual response to a dose of MDMA. Objectives: To increase the awareness of potential mortality in MDMA use. Case Report: We report the case of a patient with a lethal intoxication after pure MDMA intoxication. The serum toxicology screening showed an elevated level of MDMA (1.5 mg/L) but no other amphetamines or other drugs. Conclusions: The cause of death was a rapidly evolving hyperkalemia due to rhabdomyolysis. There is still a need to educate the public about the dangers of this so-called "safe" party drug. Copyright © 2012 Elsevier Inc. Printed in the USA. All rights reserved
Continue monitoring van vitale parameters op de verpleegafdeling:Afwachten of instappen?
Verschillende slimme pleisters en draagbare monitoren kunnen op een niet-invasieve wijze vitale parameters meten. Continue registratie door deze wearables maakt trendvisualisatie en -analyse mogelijk om zorgprofessionals op tijd te alarmeren voor klinische achteruitgang. Het doel is niet alleen complicaties op te sporen en sterfgevallen te verminderen, maar ook om verpleegkundige werkdruk te verlichten. Ondanks de snelle evolutie van deze sensoren is de belangrijkste vraag nu: hoe valide, effectief en lokaal bruikbaar zijn deze wearables? En is eventuele aanschaf al te rechtvaardigen? Eenduidige richtlijnen over de vereisten van deze sensoren ontbreken en wetenschappelijk bewijs over de validiteit en klinische effectiviteit is nog beperkt. Recent medisch onderzoek laat echter voor het eerst zien dat de vitale parameters van deze wearables in combinatie met slimme algoritmes de ziekenhuismortaliteit en morbiditeit kunnen verminderen
Correlation of Carotid Doppler Blood Flow With Invasive Cardiac Output Measurements in Cardiac Surgery Patients
Objective: Carotid Doppler ultrasound has been a topic of recent interest, as it may be a promising noninvasive hemodynamic monitoring tool. In this study, the relation between carotid artery blood flow and invasive cardiac output (CO) was evaluated. Design: A prospective, observational study. Setting: A single-institution, tertiary referral hospital. Participants: Eighteen elective cardiac surgery patients. Interventions: CO was measured by calibrated pulse contour analysis. Simultaneously, carotid artery pulsed-wave Doppler measurements were obtained in the operating room in three clinical settings: after induction of anesthesia (T1), after a passive leg raise maneuverer (T2), and at the end of surgery (T3). Measurements and Main Results: Correlation and trending between carotid artery blood flow and invasive CO were evaluated. Furthermore, two Bland-Altman plots were constructed to evaluate the level of agreement between carotid artery-derived CO and invasive CO measurements. Carotid artery blood flow correlated moderately with invasive CO (ρ = 0.67, 95% confidence interval 0.56-0.76, p < 0.05). Concordance between the percentage change of carotid artery blood flow and invasive CO from T1 to T3 was 72%. The level of agreement between carotid artery-derived CO and invasive CO was ±2.29; ±2.57 L/min, with a bias of 0.1; –0.54 L/min, and mean error of 50% and 48%, for the two Bland-Altman analyses, respectively. Intraexamination precision was acceptable. Conclusions: In cardiac surgery patients, carotid artery blood flow correlated moderately with invasive CO measurements. However, the trending ability of carotid artery blood flow was poor, and carotid artery-derived CO tended not to be interchangeable with invasive CO