50 research outputs found
Nanoscopical analysis reveals an orderly arrangement of the presynaptic scaffold protein Bassoon at the Golgi-apparatus
Bassoon is a core scaffold protein of the presynaptic active zone. In brain synapses, the C-terminus of Bassoon is oriented toward the plasma membrane and its N-terminus oriented towards synaptic vesicles. At the Golgi-apparatus Bassoon is thought to assemble active zone precursor structures, but whether it is arranged in an orderly fashion is unknown. Understanding the topology of this large scaffold protein is important for models of active zone biogenesis.
Using stimulated emission depletion nanoscopy in cultured hippocampal neurons, we found that an N-terminal intramolecular tag of recombinant Bassoon, but not C-terminal tag, colocalized with markers of the trans-Golgi network (TGN). The N-terminus of Bassoon was located between 48 nm and 69 nm away from TGN38, while its C-terminus was located between 100 nm and 115 nm away from TGN38. Sequences within the first 95 amino acids of Bassoon were required for this arrangement.
Our results indicate that at the Golgi-apparatus Bassoon is oriented with its N-terminus towards and its C-terminus away from the trans-Golgi network membrane. Moreover, they suggest that Bassoon is an extended molecule at the trans-Golgi network with the distance between amino acids 97 and 3938 estimated to be between 46 and 52 nm.
Our data are consistent with a model, in which the N-terminus of Bassoon binds to the membranes of the trans-Golgi network, while the C-terminus associates with active zone components, thus reflecting the topographic arrangement characteristic of synapses also at the Golgi-apparatu
Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy
Noonan syndrome (NS) is characterized by reduced growth, craniofacial
abnormalities, congenital heart defects, and variable cognitive deficits. NS
belongs to the RASopathies, genetic conditions linked to mutations in
components and regulators of the Ras signaling pathway. Approximately 50% of
NS cases are caused by mutations in PTPN11. However, the molecular mechanisms
underlying cognitive impairments in NS patients are still poorly understood.
Here, we report the generation and characterization of a new conditional mouse
strain that expresses the overactive Ptpn11D61Y allele only in the forebrain.
Unlike mice with a global expression of this mutation, this strain is viable
and without severe systemic phenotype, but shows lower exploratory activity
and reduced memory specificity, which is in line with a causal role of
disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive
deficits. To explore the underlying mechanisms we investigated the neuronal
activity-regulated Ras signaling in brains and neuronal cultures derived from
this model. We observed an altered surface expression and trafficking of
synaptic glutamate receptors, which are crucial for hippocampal neuronal
plasticity. Furthermore, we show that the neuronal activity-induced ERK
signaling, as well as the consecutive regulation of gene expression are
strongly perturbed. Microarray-based hippocampal gene expression profiling
revealed profound differences in the basal state and upon stimulation of
neuronal activity. The neuronal activity-dependent gene regulation was
strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional
networks revealed changes in the cellular signaling beyond the dysregulation
of Ras/MAPK signaling that is nearly exclusively discussed in the context of
NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling
were experimentally confirmed. In summary, this study uncovers aberrant
neuronal activity-induced signaling and regulation of gene expression in
Ptpn11D61Y mice and suggests that these deficits contribute to the
pathophysiology of cognitive impairments in NS
Bassoon inhibits proteasome activity via interaction with PSMB4
Abstract
Proteasomes are protein complexes that mediate controlled degradation of damaged or unneeded cellular proteins. In neurons, proteasome regulates synaptic function and its dysfunction has been linked to neurodegeneration and neuronal cell death. However, endogenous mechanisms controlling proteasomal activity are insufficiently understood. Here, we describe a novel interaction between presynaptic scaffolding protein bassoon and PSMB4, a β subunit of the 20S core proteasome. Expression of bassoon fragments that interact with PSMB4 in cell lines or in primary neurons attenuates all endopeptidase activities of cellular proteasome and induces accumulation of several classes of ubiquitinated and non-ubiquitinated substrates of the proteasome. Importantly, these effects are distinct from the previously reported impact of bassoon on ubiquitination and autophagy and might rely on a steric interference with the assembly of the 20S proteasome core. In line with a negative regulatory role of bassoon on endogenous proteasome we found increased proteasomal activity in the synaptic fractions prepared from brains of bassoon knock-out mice. Finally, increased activity of proteasome and lower expression levels of synaptic substrates of proteasome could be largely normalized upon expression of PSMB4-interacting fragments of bassoon in neurons derived from bassoon deficient mice. Collectively, we propose that bassoon interacts directly with proteasome to control its activity at presynapse and thereby it contributes to a compartment-specific regulation of neuronal protein homeostasis. These findings provide a mechanistic explanation for the recently described link of bassoon to human diseases associated with pathological protein aggregation.
Graphic Abstract
Presynaptic cytomatrix protein bassoon (Bsn) interacts with PSMB4, the β7 subunit of 20S core proteasome, via three independent interaction interfaces. Bsn inhibits proteasomal proteolytic activity and degradation of different classes of proteasomal substrates presumably due to steric interference with the assembly of 20S core of proteasome. Upon Bsn deletion in neurons, presynaptic substrates of the proteasome are depleted, which can be reversed upon expression of PSMB4-interacting interfaces of Bsn. Taken together, bsn controls the degree of proteasome degradation within the presynaptic compartment and thus, contributes to the regulation of synaptic proteom
CtBP1-Mediated Membrane Fission Contributes to Effective Recycling of Synaptic Vesicles
Compensatory endocytosis of released synaptic vesicles (SVs) relies on coordinated signaling at the lipid-protein interface. Here, we address the synaptic function of C-terminal binding protein 1 (CtBP1), a ubiquitous regulator of gene expression and membrane trafficking in cultured hippocampal neurons. In the absence of CtBP1, synapses form in greater density and show changes in SV distribution and size. The increased basal neurotransmission and enhanced synaptic depression could be attributed to a higher vesicular release probability and a smaller fraction of release-competent SVs, respectively. Rescue experiments with specifically targeted constructs indicate that, while synaptogenesis and release probability are controlled by nuclear CtBP1, the efficient recycling of SVs relies on its synaptic expression. The ability of presynaptic CtBP1 to facilitate compensatory endocytosis depends on its membrane-fission activity and the activation of the lipid-metabolizing enzyme PLD1. Thus, CtBP1 regulates SV recycling by promoting a permissive lipid environment for compensatory endocytosis
Linking epileptic phenotypes and neural extracellular matrix remodeling signatures in mouse models of epilepsy
Epilepsies are multifaceted neurological disorders characterized by abnormal brain activity, e.g. caused by imbalanced synaptic excitation and inhibition. The neural extracellular matrix (ECM) is dynamically modulated by physiological and pathophysiological activity and critically involved in controlling the brain's excitability. We used different epilepsy models, i.e. mice lacking the presynaptic scaffolding protein Bassoon at excitatory, inhibitory or all synapse types as genetic models for rapidly generalizing early-onset epilepsy, and intra-hippocampal kainate injection, a model for acquired temporal lobe epilepsy, to study the relationship between epileptic seizures and ECM composition. Electroencephalogram recordings revealed Bassoon deletion at excitatory or inhibitory synapses having diverse effects on epilepsy-related phenotypes. While constitutive Bsn mutants and to a lesser extent GABAergic neuron-specific knockouts (BsnDlx5/6cKO) displayed severe epilepsy with more and stronger seizures than kainate-injected animals, mutants lacking Bassoon solely in excitatory forebrain neurons (BsnEmx1cKO) showed only mild impairments. By semiquantitative immunoblotting and immunohistochemistry we show model-specific patterns of neural ECM remodeling, and we also demonstrate significant upregulation of the ECM receptor CD44 in null and BsnDlx5/6cKO mutants. ECM-associated WFA-binding chondroitin sulfates were strongly augmented in seizure models. Strikingly, Brevican, Neurocan, Aggrecan and link proteins Hapln1 and Hapln4 levels reliably predicted seizure properties across models, suggesting a link between ECM state and epileptic phenotype
MAP1B Regulates Axonal Development by Modulating Rho-GTPase Rac1 Activity
This article shows a novel function for the MAP1B protein, related to the control of actin dynamics through interaction with Tiam1
Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via Alpha7 Acetylcholine Receptor and CDK5/Calcineurin Signaling
Despite the central role of amyloid β (Aβ) peptide in the etiopathogenesis of Alzheimer’s disease (AD), its physiological function in healthy brain is still debated. It is well established that elevated levels of Aβ induce synaptic depression and dismantling, connected with neurotoxicity and neuronal loss. Growing evidence suggests a positive regulatory effect of Aβ on synaptic function and cognition; however the exact cellular and molecular correlates are still unclear. In this work, we tested the effect of physiological concentrations of Aβ species of endogenous origin on neurotransmitter release in rat cortical and hippocampal neurons grown in dissociated cultures. Modulation of production and degradation of the endogenous Aβ species as well as applications of the synthetic rodent Aβ40 and Aβ42 affected efficacy of neurotransmitter release from individual presynapses. Low picomolar Aβ40 and Aβ42 increased, while Aβ depletion or application of low micromolar concentration decreased synaptic vesicle recycling, showing a hormetic effect of Aβ on neurotransmitter release. These Aβ-mediated modulations required functional alpha7 acetylcholine receptors as well as extracellular and intracellular calcium, involved regulation of CDK5 and calcineurin signaling and increased recycling of synaptic vesicles. These data indicate that Aβ regulates neurotransmitter release from presynapse and suggest that failure of the normal physiological function of Aβ in the fine-tuning of SV cycling could disrupt synaptic function and homeostasis, which would, eventually, lead to cognitive decline and neurodegeneration
Nanoscopical Analysis Reveals an Orderly Arrangement of the Presynaptic Scaffold Protein Bassoon at the Golgi-Apparatus
Bassoon is a core scaffold protein of the presynaptic active zone. In brain synapses, the C-terminus of Bassoon is oriented toward the plasma membrane and its N-terminus is oriented toward synaptic vesicles. At the Golgi-apparatus, Bassoon is thought to assemble active zone precursor structures, but whether it is arranged in an orderly fashion is unknown. Understanding the topology of this large scaffold protein is important for models of active zone biogenesis. Using stimulated emission depletion nanoscopy in cultured hippocampal neurons, we found that an N-terminal intramolecular tag of recombinant Bassoon, but not C-terminal tag, colocalized with markers of the trans-Golgi network (TGN). The N-terminus of Bassoon was located between 48 and 69 nm away from TGN38, while its C-terminus was located between 100 and 115 nm away from TGN38. Sequences within the first 95 amino acids of Bassoon were required for this arrangement. Our results indicate that, at the Golgi-apparatus, Bassoon is oriented with its N-terminus toward and its C-terminus away from the trans Golgi network membrane. Moreover, they suggest that Bassoon is an extended molecule at the trans Golgi network with the distance between amino acids 97 and 3,938, estimated to be between 46 and 52 nm. Our data are consistent with a model, in which the N-terminus of Bassoon binds to the membranes of the trans-Golgi network, while the C-terminus associates with active zone components, thus reflecting the topographic arrangement characteristic of synapses also at the Golgi-apparatus
Microtubule-associated Protein 1B (MAP1B) Is Required for Dendritic Spine Development and Synaptic Maturation
Microtubule-associated protein 1B (MAP1B) is prominently
expressed during early stages of neuronal development, and it
has been implicated in axonal growth and guidance. MAP1B
expression is also found in the adult brain in areas of significant
synaptic plasticity. Here, we demonstrate that MAP1B is present in dendritic spines, and we describe a decrease in the density
of mature dendritic spines in neurons of MAP1B-deficient mice
that was accompanied by an increase in the number of immature
filopodia-like protrusions. Although these neurons exhibited
normal passive membrane properties and action potential firing, AMPA receptor-mediated synaptic currents were significantly diminished.Moreover, we observed a significant decrease
in Rac1 activity and an increase in RhoA activity in the postsynaptic densities of adult MAP1B /
mice when compared
with wild type controls. MAP1B /
fractions also exhibited a
decrease in phosphorylated cofilin. Taken together, these
results indicate a new and important role for MAP1B in the
formation and maturation of dendritic spines, possibly through
the regulation of the actin cytoskeleton. This activity of MAP1B
could contribute to the regulation of synaptic activity and plasticity in the adult brainPeer reviewe