588 research outputs found

    A Five Dimensional Perspective on Many Particles in the Snyder basis of Double Special Relativity

    Full text link
    After a brief summary of Double Special Relativity (DSR), we concentrate on a five dimensional procedure, which consistently introduce coordinates and momenta in the corresponding four-dimensional phase space, via a Hamiltonian approach. For the one particle case, the starting point is a de Sitter momentum space in five dimensions, with an additional constraint selected to recover the mass shell condition in four dimensions. Different basis of DSR can be recovered by selecting specific gauges to define the reduced four dimensional degrees of freedom. This is shown for the Snyder basis in the one particle case. We generalize the method to the many particles case and apply it again to this basis. We show that the energy and momentum of the system, given by the dynamical variables that are generators of translations in space and time and which close the Poincar\'e algebra, are additive magnitudes. From this it results that the rest energy (mass) of a composite object does not have an upper limit, as opposed to a single component particle which does.Comment: 12 pages, no figures, AIP Conf. Pro

    Duality for massive spin two theories in arbitrary dimensions

    Full text link
    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions DD. This is achieved in terms of a mixed symmetry tensor TA[B1B2...BD2]T_{A[B_{1}B_{2}... B_{D-2}]}, without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.Comment: 14 pages, no figures, revtex 4. Some new comments and explanations have been added and the notation homogeneize

    Reality and causality in quantum gravity modified electrodynamics

    Full text link
    We present a general description of the propagation properties of quantum gravity modified electrodynamics characterized by constitutive relations up to second order in the correction parameter. The effective description corresponds to an electrodynamics in a dispersive and absorptive non-local medium, where the Green functions and the refraction indices can be explicitly calculated. The reality of the electromagnetic field together with the requirement of causal propagation in a given referrence frame leads to restrictions in the form of such refraction indices. In particular, absorption must be present in all cases and, contrary to the usual assumption, it is the dominant aspect in those effective models which exhibit linear effects in the correction parameter not related to birefringence. In such a situation absorption is linear while propagation is quadratical in the correction parameter.Comment: 15 pages, LaTex, minor changes to clarify some points, version accepted for publicatio
    corecore