10,127 research outputs found
Narrowband Photon Pair Source for Quantum Networks
We demonstrate a compact photon pair source based on a periodically poled
lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen
such that the emitted photon pair modes can be matched in the region of telecom
ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This
approach provides efficient, low-loss, mode selection that is compatible with
standard telecommunication networks. Photons with a coherence time of 8.6 ns
(116 MHz) are produced and their purity is demonstrated. A source brightness of
134 pairs(s.mW.MHz) is reported. The high level of purity and
compatibility with standard telecom networks is of great importance for complex
quantum communication networks
Nuclear processes associated with plant immunity and pathogen susceptibility
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants
Short and long run tests of the expectations hypothesis: the Portuguese case
The purpose of this paper is to test both short- and long-run implications of the (rational) expectations hypothesis of the term structure of interest rates using Portuguese data for the interbank money market. The results support only a very weak, long-run or "asymptotic" version of the hypothesis, and broadly agree with previous (but separate) evidence for other countries. Empirical evidence supports the cointegration of Portuguese rates and the "puzzle" well known in the literature: although its forecasts of future short-term rates are in the correct direction, the spread between longer and shorter rates fails to forecast future longer rates. Further short-run implications of the hypothesis in terms of the predictive ability of the spread are also clearly rejected, even for the more stable period which emerged in the middle nineties.Term structure; Expectations hypothesis; Hypothesis testing; Structural breaks; Portugal
Split-sideband spectroscopy in slowly modulated optomechanics
Optomechanical coupling between the motion of a mechanical oscillator and a
cavity represents a new arena for experimental investigation of quantum effects
on the mesoscopic and macroscopic scale.The motional sidebands of the output of
a cavity offer ultra-sensitive probes of the dynamics. We introduce a scheme
whereby these sidebands split asymmetrically and show how they may be used as
experimental diagnostics and signatures of quantum noise limited dynamics. We
show split-sidebands with controllable asymmetry occur by simultaneously
modulating the light-mechanical coupling and - slowly and out
of-phase. Such modulations are generic but already occur in optically trapped
set-ups where the equilibrium point of the oscillator is varied cyclically. We
analyse recently observed, but overlooked, experimental split-sideband
asymmetries; although not yet in the quantum regime, the data suggests that
split sideband structures are easily accessible to future experiments
Some boundary effects in quantum field theory
We have constructed a quantum field theory in a finite box, with periodic
boundary conditions, using the hypothesis that particles living in a finite box
are created and/or annihilated by the creation and/or annihilation operators,
respectively, of a quantum harmonic oscillator on a circle. An expression for
the effective coupling constant is obtained showing explicitly its dependence
on the dimension of the box.Comment: 12 pages, Late
- …