4,807 research outputs found

    Multiple Jeopardy in Employment Discrimination Cases

    Get PDF

    Low-dimensional chaos in populations of strongly-coupled noisy maps

    Full text link
    We characterize the macroscopic attractor of infinite populations of noisy maps subjected to global and strong coupling by using an expansion in order parameters. We show that for any noise amplitude there exists a large region of strong coupling where the macroscopic dynamics exhibits low-dimensional chaos embedded in a hierarchically-organized, folded, infinite-dimensional set. Both this structure and the dynamics occuring on it are well-captured by our expansion. In particular, even low-degree approximations allow to calculate efficiently the first macroscopic Lyapunov exponents of the full system.Comment: 16 pages, 9 figures. Progress of Theoretical Physics, to appea

    The Fermi blazars' divide based on the diagnostic of the SEDs peak frequencies

    Full text link
    We have studied the quasi-simultaneous Spectral Energy Distributions (SED) of 48 LBAS blazars, detected within the three months of the LAT Bright AGN Sample (LBAS) data taking period, combining Fermi and Swift data with radio NIR-Optical and hard-X/gamma-ray data. Using these quasi-simultaneous SEDs, sampling both the low and the high energy peak of the blazars broad band emission, we were able to apply a diagnostic tool based on the estimate of the peak frequencies of the synchrotron (S) and Inverse Compton (IC) components. Our analysis shows a Fermi blazars' divide based on the peak frequencies of the SED. The robust result is that the Synchrotron Self Compton (SSC) region divides in two the plane were we plot the peak frequency of the synchrotron SED vs the typical Lorentz factor of the electrons most contributing to the synchrotron emission and to the inverse Compton process. Objects within or below this region, radiating likely via the SSC process, are high-frequency-peaked BL Lac object (HBL), or low/intermediate-frequency peaked BL Lac object (LBL/IBL). All of the IBLs/LBLs within or below the SSC region are not Compton dominated. The objects lying above the SSC region, radiating likely via the External radiation Compton (ERC) process, are Flat Spectrum Radio Quasars and IBLs/LBLs. All of the IBLs/LBLs in the ERC region show a significant Compton dominance.Comment: Contribution to the Workshop SciNeGHe 2009/Gamma-ray Physics in the LHC era (Assisi - Italy, Oct. 7-9 2009
    • …
    corecore