1 research outputs found

    An Immunochemical Approach to Detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) Produced by Pseudomonas aeruginosa Clinical Isolates

    Get PDF
    Pseudomonas aeruginosa; Quorum sensing; VirulencePseudomonas aeruginosa; Detecció de quòrum; VirulènciaPseudomonas aeruginosa; Detección de quórum; VirulenciaUnderstanding quorum sensing (QS) and its role in the development of pathogenesis may provide new avenues for diagnosing, surveillance, and treatment of infectious diseases. For this purpose, the availability of reliable and efficient analytical diagnostic tools suitable to specifically detect and quantify these essential QS small molecules and QS regulated virulence factors is crucial. Here, we reported the development and evaluation of antibodies and an enzyme-linked immunosorbent assay (ELISA) for HQNO (2-heptyl-4-quinoline N-oxide), a QS product of the PqsR system, which has been found to act as a major virulence factor that interferes with the growth of other microorganisms. Despite the nonimmunogenic character of HQNO, the antibodies produced showed high avidity and the microplate-based ELISA developed could detect HQNO in the low nM range. Hence, a limit of detection (LOD) of 0.60 ± 0.13 nM had been reached in Müeller Hinton (MH) broth, which was below previously reported levels using sophisticated equipment based on liquid chromatography coupled to mass spectrometry. The HQNO profile of release of different Pseudomonas aeruginosa clinical isolates analyzed using this ELISA showed significant differences depending on whether the clinical isolates belonged to patients with acute or chronic infections. These data point to the possibility of using HQNO as a specific biomarker to diagnose P. aeruginosa infections and for patient surveillance. Considering the role of HQNO in inhibiting the growth of coinfecting bacteria, the present ELISA will allow the investigation of these complex bacterial interactions underlying infections. IMPORTANCE Bacteria use quorum sensing (QS) as a communication mechanism that releases small signaling molecules which allow synchronizing a series of activities involved in the pathogenesis, such as the biosynthesis of virulence factors or the regulation of growth of other bacterial species. HQNO is a metabolite of the Pseudomonas aeruginosa-specific QS signaling molecule PQS (Pseudomonas quinolone signal). In this work, the development of highly specific antibodies and an immunochemical diagnostic technology (ELISA) for the detection and quantification of HQNO was reported. The ELISA allowed profiling of the release of HQNO by clinical bacterial isolates, showing its potential value for diagnosing and surveillance of P. aeruginosa infections. Moreover, the antibodies and the ELISA reported here may contribute to the knowledge of other underlying conditions related to the pathology, such as the role of the interactions with other bacteria of a particular microbiota environment.This work has been funded by the Ministry of Science and Innovation (SAF2015-67476-R and RTI2018-096278-B-C21) and Fundación Marató de TV3 (TV32018-201825-30-31). The Nb4D group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient: 2017 SGR 1441). CIBER-BBN is an initiative funded by the Spanish National Plan for Scientific and Technical Research and Innovation from 2013 to 2016, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions were financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Enrique J. Montagut and Juan Raya wish to thank the FPI fellowship (BES-2016-076496 and PRE2019-087542, respectively) from the Spanish Ministry of Science and Innovation. The Custom Antibody Service (CAbS) is acknowledged for its assistance and support in the production of HQNO antibodies
    corecore