1,020 research outputs found
Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV
Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators O and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]
Search for a light charged Higgs boson in t -> H±b decays, with H± -> cb, in the lepton plus jets final state in proton-proton collisions at root s=13 TeV with the ATLAS detector
A search for a charged Higgs boson, H-+/-, produced in top-quark decays, t -> H(+/-)b, is presented. The search targets H-+/- decays into a bottom and a charm quark, H-+/- -> cb. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying W boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing b-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy root s = 13TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139 fb(-1). Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions B( t -> H-+/- b) x B( H +/- -> cb) for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs
Measurement of the tt¯ production cross-section in pp collisions at √s = 5.02 TeV with the ATLAS detector
The inclusive top-quark pair (tt¯) production cross-section σ is measured in proton–proton collisions at a centre-of-mass energy s = 5.02 TeV, using 257 pb of data collected in 2017 by the ATLAS experiment at the LHC. The tt¯ cross-section is measured in both the dilepton and single-lepton final states of the tt¯ system and then combined. The combination of the two measurements yields σtt¯=67.5±0.9(stat.)±2.3(syst.)±1.1(lumi.)±0.2(beam)pb, where the four uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, and imperfect knowledge of both the integrated luminosity and the LHC beam energy, giving a total uncertainty of 3.9%. The result is in agreement with theoretical quantum chromodynamic calculations at next-to-next-to-leading order in the strong coupling constant, including the resummation of next-to-next-to-leading logarithmic soft-gluon terms, and constrains the parton distribution functions of the proton at large Bjorken-x. [Figure not available: see fulltext.
Search for neutral long-lived particles in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter
A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb of proton-proton collision data collected by the ATLAS detector at the LHC in 2015–2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of c times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV. [Figure not available: see fulltext.
Combined Measurement of the Higgs Boson Mass from the Formula Presented and Formula Presented Decay Channels with the ATLAS Detector Using Formula Presented, 8, and 13 TeV Formula Presented Collision Data
A measurement of the mass of the Higgs boson combining the Formula Presented and Formula Presented decay channels is presented. The result is based on Formula Presented of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of Formula Presented. This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics
Search for Dark Photons in Rare Z Boson Decays with the ATLAS Detector
A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139  fb^{-1} of sqrt[s]=13  TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α_{D}ϵ^{2}, in the dark photon mass range of [5, 40] GeV except for the ϒ mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments
Search for Majorana neutrinos in same-sign WW scattering events from pp collisions at √s=13 TeV
A search for Majorana neutrinos in same-sign WW scattering events is presented. The analysis uses s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb recorded during 2015–2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign WW scattering and WZ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino–heavy-neutrino mass-mixing matrix element | V| as a function of the heavy Majorana neutrino’s mass m , and on the effective μμ Majorana neutrino mass | m|
Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and a photon using 139 fb - 1 of ATLAS √s=13 TeV proton–proton collision data
Searches for the exclusive decays of Higgs and Z bosons into a vector quarkonium state and a photon are performed in the μ+μ-γ final state with a proton–proton collision data sample corresponding to an integrated luminosity of 139 fb collected at s=13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% confidence-level upper limits on the branching fractions of the Higgs boson decays into J/ψγ , ψ(2S)γ , and Υ(1S,2S,3S)γ are found to be 2.0 × 10 , 10.5 × 10 , and (2.5 , 4.2 , 3.4) × 10 , respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL upper limits on the branching fractions of the Z boson decays are 1.2 × 10 , 2.4 × 10 , and (1.1 , 1.3 , 2.4) × 10 . An observed 95% CL interval of (- 133 , 175) is obtained for the κ/ κ ratio of Higgs boson coupling modifiers, and a 95% CL interval of (- 37 , 40) is obtained for κ/ κ
Constraints on Higgs boson production with large transverse momentum using H →b b ¯ decays in the ATLAS detector
This paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb-1. Higgs bosons decaying into bb¯ are reconstructed as single large-radius jets recoiling against a hadronic system and are identified by the experimental signature of two b-hadron decays. The experimental techniques are validated in the same kinematic regime using the Z→bb¯ process. The 95% confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively
Measurement of Higgs boson decay into b-quarks in associated production with a top-quark pair in pp collisions at √s = 13 TeV with the ATLAS detector
The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a b-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of s = 13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.35−0.34+0.36. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV. [Figure not available: see fulltext.
- …