6 research outputs found

    Targeted disruption of the Wnt2 gene results in placentation defects

    Get PDF
    Wnt genes have been implicated in a range of developmental processes in the mouse including the patterning of the central nervous system and limbs. Reported here for the first time is the expression of Wnt2 in the early heart field of 7.5-8.5 dpc (days post-coitum) mouse embryos, making Wnt2 a potentially useful gene marker for the early stages of heart development. Expression was also detected in the allantois from 8.0 dpc and at later stages in the placenta and umbilicus. Mice deficient in Wnt2, generated by gene targeting, displayed runting and approximately 50% died perinatally. Histological analysis revealed alterations in the size and structure of placentas from these mice from 14.5 dpc. The placental defects were associated primarily with the labyrinthine zone and included oedema and tissue disruption and accumulation of maternal blood in large pools. There was also an apparent decrease in the number of foetal capillaries and an increase in the amount of fibrinoid material in the Wnt2 mutant placentas. These results suggest that Wnt2 is required for the proper vascularisation of the mouse placenta and the placental defects in Wnt2-deficient mice result in a reduction in birthweight and perinatal lethality

    Murine WNT11 is a secreted glycoprotein that morphologically transforms mammary epithelial cells

    No full text
    Wnt genes encode a set of structurally related cell surface glycoproteins that appear to have roles in cell-cell signalling. The ectopic expression of several murine Wnt genes has been implicated in the transformation of mammary epithelial and the onset of mammary tumours. Wnt11 is expressed in the developing embryo in a variety of structures including the dermatome/myotome junction of the somites, the truncus ateriosus region of the heart and limb mesenchyme. Here we report that Wnt11 encodes a glycoprotein that is secreted from expressing cells and becomes associated with the extracellular matrix. In addition, Rat2 fibroblasts expressing WNT11 (which are not morphologically altered themselves) are able to induce the transformation of adjacent C57MG mammary epithelial cells in co-culture experiments. These results suggest that WNT11 functions via a paracrine signalling mechanism to have a direct effect on the morphology and growth characteristics of mammary epithelial cells
    corecore