15 research outputs found

    Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    Full text link
    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality

    Evaluation of the characteristics of non-oxidative biodiesels: A FAME composition, thermogravimetric and IR analysis

    Full text link
    This experiment evaluates the effects of non-oxidative biodiesel (low oxygen content biodiesels) characteristics and their engine performances. Biodiesels produced from different feedstocks typically contains 10% to 15% oxygen by weight, which enhances the combustion quality and reduces the emissions of hydrocarbons (HCs) and carbon monoxide (CO). However, it produces a higher amount of nitrogen oxides (NOx) due to an increasing number of combustion products, resulting in a higher cylinder temperature. In addition, lean air-fuel mixtures can contribute to higher NOx emissions because biodiesel is more oxygenated than diesel. In this study, biodiesels produced from different feedstocks by a transesterification process were used to reduce the oxygen content by dipping an iron bar in the biodiesels, which absorbs oxygen and gets oxidized. Then, the oil characteristics, such as the percentage of saturated and unsaturated fatty acids, thermal degradation, stability and existing functional groups, were analyzed using fatty acid methyl ester (FAME) composition analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy analysis of neat biodiesel and non-oxidative biodiesel. Herein, Pongamia and Moringa biodiesels, containing normal and reduced weight percentages of oxygen, were evaluated to improve the quality and stability of biodiesels used in the diesel engine, which will also reduce the NOx emissions. Non-oxidative biodiesels had some positive effect on their properties, which can further reduce the NOx emissions. Herein, non-oxidative Pongamia and Moringa had quite similar characteristics and the former was observed to perform better in the reduction of NOx and other emissions as well

    Assessment of performance, emission and combustion characteristics of palm, jatropha and Calophyllum inophyllum biodiesel blends

    Full text link
    Biodiesel is an alternative diesel fuel that is produced from renewable resources. Energy studies conducted over the last two decades focused on solutions to problems of rising fossil fuel price, increasing dependency on foreign energy sources, and environmental concerns. Palm oil biodiesel is mostly used in Malaysia. Engine performance and emission tests were conducted with a single-cylinder diesel engine fueled with palm, jatropha and Calophyllum inophyllum biodiesel blends (PB10, PB20, JB10, JB20, CIB10, and CIB20) and then compared with diesel fuel at a full-load engine speed range of 1000–2400 rpm. The average brake specific fuel consumption increased from 7.96% to 10.15% while operating on 10%, and 20%, blends of palm, jatropha and C. inophyllum biodiesel. The average brake power for PB10 and PB20 were 9.31% and 12.93% lower respectively compared with that for diesel fuel. JB10 showed higher amount of brake specific fuel consumption than diesel and other biodiesel blends. PB20 produces comparatively lower CO and HC emissions than diesel and biodiesel blends. JB10 showed 31.09% lower smoke opacity than diesel fuel. Diesel produces lower amount of NOX emission compared to biodiesel blends. The higher peak cylinder pressure and heat release rate were found with CIB blends compared to diesel fuel, palm and jatropha biodiesel blends. Results indicated that PB20 has better engine performance, and lower emission compared with diesel and biodiesel blends. Thus, PB20 is suitable for use in diesel engines without the need for any engine modification

    Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions

    Full text link
    Biodiesel comprises fatty acid esters and is used as an alternative fuel for diesel engines. However, biodiesel has poor cold flow properties (i.e., CP, CFPP and PP) than mineral diesel fuel. This study aims to reduce the PP, CFPP and CP of coconut biodiesel (CB) blends using poly(methyl acrylate) (PMA) additives and investigate their effects on single-cylinder four-stroke diesel engine performance and exhaust gas emission. DSC and TGA were used to observe crystal behavior and thermal stability of the biodiesel fuel blends. Engine performance and emission were analyzed by Dynomax-2000 software and gas analyzer, respectively. Results showed that 20% of CB blended with diesel and 0.03 wt% of PMA showed significant improvement in the PP, CFPP and CP. Other properties of B20 with additives met the requirements of ASTM D6751. The BSFC of B20 with PMA was reduced by 3.247%, whereas the BTE was increased by 2.16%, compared with those of B20. Burning B20 with PMA increased the NO emission by 2.15%, whereas HC, CO and smoke emissions were 19.81%, 13.35% and 3.93% lower than those of B20, respectively. Therefore, CB20 blend with 0.03 wt% PMA can be used as an alternative fuel in cold regions without compromising fuel quality

    Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    Full text link
    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications

    Analysis of thermal stability and lubrication characteristics of: Millettia pinnata oil

    Full text link
    Lubricants are mostly used to reduce the friction and wear between sliding and metal contact surfaces, allowing them to move smoothly over each other. Nowadays, due to the increase in oil prices and reduction of oil reserves, it is necessary to replace mineral oil, which will also protect the environment from hazards caused by these oils. It is essential to find an alternative oil for the replacement of mineral-oil-based lubricants, and vegetable oil already meets the necessary requirements. Vegetable-oil-based biolubricants are non-toxic, biodegradable, renewable and have a good lubricating performance compared to mineral-oil-based lubricants. This study analyzes the thermal stability and lubricating characteristics of different types of vegetable oil. The friction and wear characteristics of the oils were investigated using a four-ball tester, according to ASTM method 4172. Millettia pinnata oil has good oxidation stability due to the presence of higher percentages of oleic acid in its fatty acid composition. Millettia pinnata oil also shows a higher kinematic viscosity. Rice bran oil shows a higher viscosity index than other oils, and it is better for boundary lubrication. In thermogravimetric analysis, it was found that Millettia pinnata oil remains thermally stable at 391 °C. Millettia pinnata oil showed a lower coefficient of friction and rice bran oil showed a lower wear scar diameter compared to other vegetable oils and lube oils. A lower wear scar surface area was found with rice bran oil compared to other vegetable and commercial oils. Therefore, due to a better lubricating performance, Millettia pinnata oil has great potential to be used as a lubricating oil in industrial and automotive applications

    Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends

    Full text link
    A running automobile engine produces more friction and wear between its sliding components than an idle one, and thus requires lubrication to reduce this frictional effect. Biodiesel is an alternative diesel fuel that is produced from renewable resources. Energy studies conducted over the last two decades focused on solutions to problems of rising fossil fuel price, increasing dependency on foreign energy sources, and worsening environmental concerns. Palm oil biodiesel is mostly used in Malaysia. This study conducted engine performance and emission tests with a single-cylinder diesel engine fueled with palm and Calophyllum inophyllum biodiesel blends (PB10, PB20, PB30, CIB10, CIB20, and CIB30) at a full-load engine speed range of 1000-2400 rpm, and then compared the results with those of diesel fuel. Friction and wear tests were conducted using the four-ball tester with different temperatures at 40 and 80 kg load conditions and a constant speed of 1800 rpm. The average brake specific fuel consumption increased from 7.96% to 10.15% while operating on 10%, 20%, and 30% blends of palm and C. inophyllum biodiesel. The respective average brake powers for PB20 and PB30 were 9.31% and 12.93% lower compared with that for diesel fuel. PB20 produced relatively lower CO and HC emissions than the diesel and biodiesel blends. Diesel produced low amounts of NOX emission, and the CIB blend produced a lower frictional coefficient compared with the diesel and PB blends. PB30 showed high average FTP and low average WSD, both of which enhanced lubricating performance. An average metal element composition was found in PB20 under the 40 and 80 kg load conditions. PB20 showed lower worn scar surface areas compared with the diesel and biodiesel blends. Results indicated that PB20 has better engine performance, lower emission, and good lubrication properties compared with diesel and biodiesel blends. Thus, PB20 is suitable for use in diesel engines without the need for any engine modification

    Evaluating flood hazard for land-use planning in greater Dhaka of Bangladesh using remote sensing and GIS techniques

    No full text
    Floods are a common feature in rapidly urbanizing Dhaka and its adjoining areas. Though Greater Dhaka experiences flood almost in every year, flood management policies are mostly based on structural options including flood walls, dykes, embankments etc. Many shortcomings of the existing flood management systems are reported in numerous literatures. The objective of this paper is to assess flood hazard in Greater Dhaka for the historical flood event of 1998 using Synthetic Aperture Radar (SAR) data with GIS data. Flood-affected frequency and flood depth calculated from the multi-date SAR imageries were used as hydrologic parameters. Elevation heights, land cover classification,geomorphic division and drainage network data generated from optical remote sensing and analogue maps were used through GIS approach. Using a ranking matrix in three dimensional multiplication mode, flood hazard was assessed.All possible combination of flood hazard maps was prepared using land-cover, geomorphology and elevation heights for flood-affected frequency and floodwater depth. Using two hazard maps which produced the highest congruence for flood frequency and flood depth, a new flood hazard map was developed by considering the interactive effect of flood-affected frequency and floodwater depth, simultaneously. This new hazard map can provide more safety for flood countermeasures because pixels belonging to higher hazard degrees were increased due to the consideration of higher degrees of ranks. The estimation of flood hazard areas revealed that a major portion of Greater Dhaka comprised moderate to very high hazard zone. Only a little portion (8.04%) was found to be the least vulnerable to potential flood hazard. Conversely, 28.70% of Greater Dhaka was found within very high hazard zone. Based on this study, comprehensive flood hazard management strategies for land use planning decision were proposed for the efficient management of future flood disasters
    corecore