14 research outputs found

    SOX17 expression and its down-regulation by promoter methylation in cervical adenocarcinoma in situ and adenocarcinoma

    Get PDF
    Aims: SOX17 expression has not been studied in glandular lesions of the uterine cervix like adenocarcinoma in situ (AIS) and invasive adenocarcinomas (AdC), whereas SOX17 promoter CpG island methylation has been reported. Therefore, the aim of this study was to relate the topographical distribution of SOX17 expression and SOX17 methylation status to each other, and to SOX2 expression, human papillomavirus (HPV) type, and physical status of the virus. Methods and results: Immunohistochemistry was used in 45 cases to assess expression of SOX17 and SOX2. SOX17 promoter methylation was determined in 25 cases by means of bisulphite conversion and methylation-specific polymerase chain reaction. SOX17 and SOX2 showed a mutually exclusive expression pattern in normal epithelium, with a sharp delineation in the squamocolumnar junction. SOX17 was found in endocervical columnar and reserve cells, whereas SOX2 was exclusively found in squamous epithelium. In both glandular lesions and cases with coexisting glandular and squamous intraepithelial components, a complex combination of SOX17 and SOX2 expression patterns was seen and mutually exclusive expression was lost. Frequently, gain of expression of SOX2 was found and expression of SOX17 was lost. Methylation of the CpG island in the SOX17 promoter was shown to be strongly associated with loss of expression of SOX17 (P = 0.0016). Conclusions: In this study, we show for the first time a direct correlation between the topographical distribution of SOX17 expression and the methylation status of its gene promoter. This explains the heterogeneity of SOX17 expression in the glandular lesions of the cervix. No correlation was found between HPV type and physical status of the virus on the one hand and methylation status on the other

    Switches of SOX17 and SOX2 expression in the development of squamous metaplasia and squamous intraepithelial lesions of the uterine cervix

    Get PDF
    Aims: The dynamics and topographical distribution of SOX17 and SOX2 expression was studied in the transformation zone (TZ) of the uterine cervix. This TZ is a dynamic area where switches from glandular into squamous epithelium can be recognized, new squamocolumnar junctions are formed, and premalignant lesions originate. SOX17 and SOX2 show mutually exclusive expression patterns in the normal uterine cervix, with SOX2 being exclusively found in squamous epithelium, while SOX17 is detected in endocervical columnar cells and reserve cells. Methods and Results: Normal cervices and squamous intraepithelial lesions (SIL) were studied with immunohistochemistry, methylation of SOX17, human papilloma virus (HPV) genotyping, and in situ hybridization. In the TZ squamous metaplasia originating from these reserve cells can still show SOX17 expression, while also remnants of SOX17-positive immature metaplasia can be recognized in the normal squamous epithelium. SOX17 expression is gradually lost during maturation, resulting in the exclusive expression of SOX2 in the majority of (SIL). This loss of SOX17 expression is independent of methylation of the CpG island in its promotor region. HPV can be detected in SOX17-positive immature metaplastic regions in the immediate vicinity of SOX2-positive SIL, suggesting that switches in SOX17 and 2 expression can occur upon HPV infection. Conclusions: This switch in expression, and the strong association between the distribution of reserve cells and squamous areas within the columnar epithelium in the TZ, suggests that reserve cell proliferations, next to basal cells in the squamous epithelium, are potential targets for the formation of squamous lesions upon viral infection

    Monoclonal antibodies to the exon 18 encoded moiety of NCAM

    No full text
    Aim: Exon 18 expression of NCAM has been recognized as a biomarker for small cell lung cancer (SCLC). To use this finding for an improved diagnosis of SCLC and personalized treatment of patients, techniques to identify and quantitate E18, the exon 18 encoded protein moiety of NCAM, are needed. We developed three monoclonal antibodies for this purpose.Methods: The his-tagged E18 antigen was expressed in E. coli and, after purification, used to immunize mice. Hybridoma’s were isolated by standard procedures and tested for their reaction with E18.Results: Three monoclonal antibodies, MUM-1, MUM-4 and MUM-6 were obtained. They reacted with E18 in western blots, with SCLC cell line NCI-H82, but not with unrelated his-tagged proteins. Only permeabilized NCI-H82 cells stained with the antibodies, confirming the intracellular position of E18. Next an enzyme-linked immunosorbent assay was developed using the earlier isolated monoclonal antibody MUMi-21B2, coated on the surface of microtiter wells as capture antibody and biotinylated MUM-6 as second antibody. Using streptavidin conjugated to horse radish peroxidase a linear dose response curve to his-tagged E18 antigen was obtained between 0 and 5 µg/mL with a sensitivity of at least 0.5 µg/mL or 50 ng/well.Conclusion: Four monoclonal antibodies are available to be used in assays for the identification and quantification of SCLC biomarker E18. This will enable the development of liquid biopsies to follow the tumor load in patients

    The 180 splice variant of NCAM-containing exon 18-is specifically expressed in small cell lung cancer cells

    No full text
    Background: The Neural Cell Adhesion Molecule (NCAM) is a glycoprotein expressed as 120, 140 and/or 180 kDa isoforms, all derived through alternative splicing of a single gene. NCAM 120 contains no intracellular domain, whereas NCAM 140 and 180 have different intracellular domains determined by alternative splicing of exon 18. NCAM has been described as a biomarker to discriminate small cell lung cancer (SCLC) from non-SCLC (NSCLC). However, peripheral blood mononuclear cells (PBMC) also express NCAM. We studied the expression of NCAM splice variants in cell lines, tumor tissues and control cells. Methods: Using reverse transcriptase-PCR we evaluated the expression of NCAM exon 18 splice variants in lung cancers cell lines, control cell lines, PBMC of healthy controls and SCLC tissue. In addition we studied the expression of the NCAM exon 18 encoded protein (E18) in SCLC by immunocytochemistry and flow cytometry using an E18-specific monoclonal antibody obtained by hybridoma fusion of E18-immunized mouse spleen cells. Finally we looked at immune responses to E18 in mice. Results: We found expression of RNA encoding the NCAM 180 variant in all SCLC cell lines. NCAM exon 18 was not expressed in 23/28 (82%) of the other tumor and leukemia cell lines tested and PBMC. Next, we also evaluated the expression of NCAM exon 18 in human SCLC tissue. Expression of NCAM exon 18 in 8 of the 10 (80%) SCLC biopsy samples was found. The newly raised E18-specific antibodies stained NCAM at the adherent junctions between adjacent cells in SCLC cell lines. The data demonstrate the intracellular location of E18 in SCLC. Furthermore, a specific cytotoxic T cell (CTL) response and significant antibody titers were found in mice upon immunization with recombinant E18 and its encoding DNA. Conclusions: The results of this study can be applied in the diagnosis and immunotherapy of SCLC. A larger study investigating E18 as a marker for SCLC is indicated

    Molecular characterization, prevalence and clinical relevance of Phodopus sungorus papillomavirus type 1 (PsuPV1) naturally infecting Siberian hamsters (&ITPhodopus sungorus&IT)

    No full text
    Phodopus sungorus papillomavirus type 1 (PsuPV1), naturally infecting Siberian hamsters (Phodopus sungorus) and clustering in the genus Pipapillomavirus (Pi-PV), is only the second PV type isolated from the subfamily of hamsters. In silico analysis of three independent complete viral genomes obtained from cervical adenocarcinoma, oral squamous cell carcinoma and normal oral mucosa revealed that PsuPV1 encodes characteristic viral proteins (E1, E2, E4, E6, E7, L1 and L2) with conserved functional domains and a highly conserved non-coding region. The overall high prevalence (102/114; 89.5 %) of PsuPV1 infection in normal oral and anogenital mucosa suggests that asymptomatic infection with PsuPV1 is very frequent in healthy Siberian hamsters from an early age onward, and that the virus is often transmitted between both anatomical sites. Using type-specific real-time PCR and chromogenic in situ hybridization, the presence of PsuPV1 was additionally detected in several investigated tumours (cervical adenocarcinoma, cervical adenomyoma, vaginal carcinoma in situ, ovarian granulosa cell tumour, mammary ductal carcinoma, oral fibrosarcoma, hibernoma and squamous cell papilloma) and normal tissues of adult animals. In the tissue sample of the oral squamous cell carcinoma individual, punctuated PsuPV1-specific in situ hybridization spots were detected within the nuclei of infected animal cells, suggesting viral integration into the host genome and a potential etiological association of PsuPV1 with sporadic cases of this neoplasm.</p

    SOX17 expression and its down-regulation by promoter methylation in cervical adenocarcinoma in situ and adenocarcinoma

    No full text
    Aims SOX17 expression has not been studied in glandular lesions of the uterine cervix like adenocarcinoma in situ (AIS) and invasive adenocarcinomas (AdC), whereas SOX17 promoter CpG island methylation has been reported. Therefore, the aim of this study was to relate the topographical distribution of SOX17 expression and SOX17 methylation status to each other, and to SOX2 expression, human papillomavirus (HPV) type, and physical status of the virus. Methods and results Immunohistochemistry was used in 45 cases to assess expression of SOX17 and SOX2. SOX17 promoter methylation was determined in 25 cases by means of bisulphite conversion and methylation-specific polymerase chain reaction. SOX17 and SOX2 showed a mutually exclusive expression pattern in normal epithelium, with a sharp delineation in the squamocolumnar junction. SOX17 was found in endocervical columnar and reserve cells, whereas SOX2 was exclusively found in squamous epithelium. In both glandular lesions and cases with coexisting glandular and squamous intraepithelial components, a complex combination of SOX17 and SOX2 expression patterns was seen and mutually exclusive expression was lost. Frequently, gain of expression of SOX2 was found and expression of SOX17 was lost. Methylation of the CpG island in the SOX17 promoter was shown to be strongly associated with loss of expression of SOX17 (P = 0.0016). Conclusions In this study, we show for the first time a direct correlation between the topographical distribution of SOX17 expression and the methylation status of its gene promoter. This explains the heterogeneity of SOX17 expression in the glandular lesions of the cervix. No correlation was found between HPV type and physical status of the virus on the one hand and methylation status on the other

    SOX2 expression in the pathogenesis of premalignant lesions of the uterine cervix: its histo-topographical distribution distinguishes between low- and high-grade CIN

    No full text
    SOX2 expression in high-grade cervical intraepithelial neoplasia (CIN3) and cervical squamous cell carcinoma is increased compared to that in the normal cervical epithelium. However, data on the expression and histological distribution of SOX2 in squamous epithelium during progression of CIN are largely lacking. We studied SOX2 expression throughout the epithelium in 53 cases of CIN1, 2, and 3. In general, SOX2 expression increased and expanded from basal/parabasal to the intermediate/superficial compartment during early stages of progression of CIN. An unexpected, specific expression pattern was found in areas classified as CIN2 and CIN3. This pattern was characterized by the absence or low expression of SOX2 in the basal/parabasal compartment and variable levels in the intermediate and superficial compartments. It was significantly associated with CIN3 (p = 0.009), not found in CIN1 and only seen in part of the CIN2 lesions. When the different patterns were correlated with the genetic make-up and presence of HPV, the CIN3-related pattern contained HPV-positive cells in the basal/parabasal cell compartment that were disomic. This is in contrast to the areas exhibiting the CIN1 and CIN2 related patterns, which frequently exhibited aneusomic cells. Based on their SOX2 localisation pattern, CIN1 and CIN2 could be delineated from CIN3. These data shed new light on the pathogenesis and dynamics of progression in premalignant cervical lesions, as well as on the target cells in the epithelium for HPV infection
    corecore