7 research outputs found

    Reconstruction of Mycobacterial Dehalogenase Rv2579 by Cumulative Mutagenesis of Haloalkane Dehalogenase LinB

    No full text
    The homology model of protein Rv2579 from Mycobacterium tuberculosis H37Rv was compared with the crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26, and this analysis revealed that 6 of 19 amino acid residues which form an active site and entrance tunnel are different in LinB and Rv2579. To characterize the effect of replacement of these six amino acid residues, mutations were introduced cumulatively into the six amino acid residues of LinB. The sixfold mutant, which was supposed to have the active site of Rv2579, exhibited haloalkane dehalogenase activity with the haloalkanes tested, confirming that Rv2579 is a member of the haloalkane dehalogenase protein family

    Biochemical Characterization of Haloalkane Dehalogenases DrbA and DmbC, Representatives of a Novel Subfamily▿

    No full text
    This study focuses on two representatives of experimentally uncharacterized haloalkane dehalogenases from the subfamily HLD-III. We report biochemical characterization of the expression products of haloalkane dehalogenase genes drbA from Rhodopirellula baltica SH1 and dmbC from Mycobacterium bovis 5033/66. The DrbA and DmbC enzymes show highly oligomeric structures and very low activities with typical substrates of haloalkane dehalogenases

    Two Rhizobial Strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, Encode Haloalkane Dehalogenases with Novel Structures and Substrate Specificities

    No full text
    Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showed the ability to dehalogenate 18 halogenated compounds, indicating that these ORFs indeed encode haloalkane dehalogenases. Therefore, these ORFs were referred to as dmlA (dehalogenase from Mesorhizobium loti) and dbjA (dehalogenase from Bradyrhizobium japonicum), respectively. The principal component analysis of the substrate specificities of various haloalkane dehalogenases clearly showed that DbjA and DmlA constitute a novel substrate specificity class with extraordinarily high activity towards β-methylated compounds. Comparison of the circular dichroism spectra of DbjA and other dehalogenases strongly suggested that DbjA contains more α-helices than the other dehalogenases. The dehalogenase activity of resting cells and Northern blot analyses both revealed that the dmlA and dbjA genes were expressed under normal culture conditions in MAFF303099 and USDA110 strain cells, respectively

    Cloning, Biochemical Properties, and Distribution of Mycobacterial Haloalkane Dehalogenases

    No full text
    Haloalkane dehalogenases are enzymes that catalyze the cleavage of the carbon-halogen bond by a hydrolytic mechanism. Genomes of Mycobacterium tuberculosis and M. bovis contain at least two open reading frames coding for the polypeptides showing a high sequence similarity with biochemically characterized haloalkane dehalogenases. We describe here the cloning of the haloalkane dehalogenase genes dmbA and dmbB from M. bovis 5033/66 and demonstrate the dehalogenase activity of their translation products. Both of these genes are widely distributed among species of the M. tuberculosis complex, including M. bovis, M. bovis BCG, M. africanum, M. caprae, M. microti, and M. pinnipedii, as shown by the PCR screening of 48 isolates from various hosts. DmbA and DmbB proteins were heterologously expressed in Escherichia coli and purified to homogeneity. The DmbB protein had to be expressed in a fusion with thioredoxin to obtain a soluble protein sample. The temperature optimum of DmbA and DmbB proteins determined with 1,2-dibromoethane is 45°C. The melting temperature assessed by circular dichroism spectroscopy of DmbA is 47°C and DmbB is 57°C. The pH optimum of DmbA depends on composition of a buffer with maximal activity at 9.0. DmbB had a single pH optimum at pH 6.5. Mycobacteria are currently the only genus known to carry more than one haloalkane dehalogenase gene, although putative haloalkane dehalogenases can be inferred in more then 20 different bacterial species by comparative genomics. The evolution and distribution of haloalkane dehalogenases among mycobacteria is discussed
    corecore