1,418 research outputs found

    Chaos from turbulence: stochastic-chaotic equilibrium in turbulent convection at high Rayleigh numbers

    Full text link
    It is shown that correlation function of the mean wind velocity generated by a turbulent thermal convection (Rayleigh number Ra1011Ra \sim 10^{11}) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied in detail

    Investigation of a generalized Obukhov Model for Turbulence

    Full text link
    We introduce a generalization of Obukhov's model [A.M. Obukhov, Adv. Geophys. 6, 113 (1959)] for the description of the joint position-velocity statistics of a single fluid particle in fully developed turbulence. In the presented model the velocity is assumed to undergo a continuous time random walk. This takes into account long time correlations. As a consequence the evolution equation for the joint position-velocity probability distribution is a Fokker-Planck equation with a fractional time derivative. We determine the solution of this equation in the form of an integral transform and derive a relation for arbitrary single time moments. Analytical solutions for the joint probability distribution and its moments are given.Comment: 10 page

    Fluctuations of temperature gradients in turbulent thermal convection

    Full text link
    Broad theoretical arguments are proposed to show, formally, that the magnitude G of the temperature gradients in turbulent thermal convection at high Rayleigh numbers obeys the same advection-diffusion equation that governs the temperature fluctuation T, except that the velocity field in the new equation is substantially smoothed. This smoothed field leads to a -1 scaling of the spectrum of G in the same range of scales for which the spectral exponent of T lies between -7/5 and -5/3. This result is confirmed by measurements in a confined container with cryogenic helium gas as the working fluid for Rayleigh number Ra=1.5x10^{11}. Also confirmed is the logarithmic form of the autocorrelation function of G. The anomalous scaling of dissipation-like quantities of T and G are identical in the inertial range, showing that the analogy between the two fields is quite deep

    Mean- Field Approximation and Extended Self-Similarity in Turbulence

    Full text link
    Recent experimental discovery of extended self-similarity (ESS) was one of the most interesting developments, enabling precise determination of the scaling exponents of fully developed turbulence. Here we show that the ESS is consistent with the Navier-Stokes equations, provided the pressure -gradient contributions are expressed in terms of velocity differences in the mean field approximation (Yakhot, Phys.Rev. E{\bf 63}, 026307, (2001)). A sufficient condition for extended self-similarity in a general dynamical systemComment: 8 pages, no figure

    On the Nature of Incompressible Magnetohydrodynamic Turbulence

    Get PDF
    A novel model of incompressible magnetohydrodynamic turbulence in the presence of a strong external magnetic field is proposed for explanation of recent numerical results. According to the proposed model, in the presence of the strong external magnetic field, incompressible magnetohydrodynamic turbulence becomes nonlocal in the sense that low frequency modes cause decorrelation of interacting high frequency modes from the inertial interval. It is shown that the obtained nonlocal spectrum of the inertial range of incompressible magnetohydrodynamic turbulence represents an anisotropic analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on the analysis performed in the framework of the weak coupling approximation, which represents one of the equivalent formulations of the direct interaction approximation, it is shown that incompressible magnetohydrodynamic turbulence could be both local and nonlocal and therefore anisotropic analogues of both the Kolmogorov and Kraichnan spectra are realizable in incompressible magnetohydrodynamic turbulence.Comment: Physics of Plasmas (Accepted). A small chapter added about 2D MHD turbulenc

    Sign-symmetry of temperature structure functions

    Full text link
    New scalar structure functions with different sign-symmetry properties are defined. These structure functions possess different scaling exponents even when their order is the same. Their scaling properties are investigated for second and third orders, using data from high-Reynolds-number atmospheric boundary layer. It is only when structure functions with disparate sign-symmetry properties are compared can the extended self-similarity detect two different scaling ranges that may exist, as in the example of convective turbulence.Comment: 18 pages, 5 figures, accepted for publication in Physical Review

    Turbulent transport of material particles: An experimental study of finite size effects

    Full text link
    We use an acoustic Lagrangian tracking technique, particularly adapted to measurements in open flows, and a versatile material particles generator (in the form of soap bubbles with adjustable size and density) to characterize Lagrangian statistics of finite sized, neutrally bouyant, particles transported in an isotropic turbulent flow of air. We vary the size of the particles in a range corresponding to turbulent inertial scales and explore how the turbulent forcing experienced by the particles depends on their size. We show that, while the global shape of the intermittent acceleration probability density function does not depend significantly on particle size, the acceleration variance of the particles decreases as they become larger in agreement with the classical scaling for the spectrum of Eulerian pressure fluctuations in the carrier flow

    Logarithmic scaling in the near-dissipation range of turbulence

    Full text link
    A logarithmic scaling for structure functions, in the form Sp[ln(r/η)]ζpS_p \sim [\ln (r/\eta)]^{\zeta_p}, where η\eta is the Kolmogorov dissipation scale and ζp\zeta_p are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity

    Destruction of a metastable string by particle collisions

    Full text link
    We calculate the probability of destruction of a metastable string by collisions of the Goldstone bosons, corresponding to the transverse waves on the string. We find a general formula that allows to determine the probability of the string breakup by a collision of arbitrary number of the bosons. We find that the destruction of a metastable string takes place only in collisions of even number of the bosons, and we explicitly calculate the energy dependence of such process in a two-particle collision for an arbitrary relation between the energy and the largest infrared scale in the problem, the length of the critical gap in the string.Comment: 15 pages, 1 figur

    On the unsteady behavior of turbulence models

    Full text link
    Periodically forced turbulence is used as a test case to evaluate the predictions of two-equation and multiple-scale turbulence models in unsteady flows. The limitations of the two-equation model are shown to originate in the basic assumption of spectral equilibrium. A multiple-scale model based on a picture of stepwise energy cascade overcomes some of these limitations, but the absence of nonlocal interactions proves to lead to poor predictions of the time variation of the dissipation rate. A new multiple-scale model that includes nonlocal interactions is proposed and shown to reproduce the main features of the frequency response correctly
    corecore