2 research outputs found
The Iron Metabolism with a Specific Focus on the Functioning of the Nervous System
Iron is the micronutrient with the best-studied biological functions. It is widely distributed in nature, and its involvement in the main metabolic pathways determines the great importance of this metal for all organisms. Iron is required for cellular respiration and various biochemical processes that ensure the proper functioning of cells and organs in the human body, including the brain. Iron also plays an important role in the production of free radicals, which can be beneficial or harmful to cells under various conditions. Reviews of iron metabolism and its regulation can be found in the literature, and further advances in understanding the molecular basis of iron metabolism are being made every year. The aim of this review is to systematise the available data on the role of iron in the function of the nervous system, especially in the brain. The review summarises recent views on iron metabolism and its regulatory mechanisms in humans, including the essential action of hepcidin. Special attention is given to the mechanisms of iron absorption in the small intestine and the purpose of this small but critically important pool of iron in the brain
Insights into the Mechanisms of Action of <i>Akkermansia muciniphila</i> in the Treatment of Non-Communicable Diseases
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut–brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies