6 research outputs found

    Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma In Vivo and In Vitro

    Get PDF
    Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters—ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma

    The Plant-Derived Compound Resveratrol in Brain Cancer: A Review

    No full text
    Despite intensive research, malignant brain tumors are among the most difficult to treat due to high resistance to conventional therapeutic approaches. High-grade malignant gliomas, including glioblastoma and anaplastic astrocytoma, are among the most devastating and rapidly growing cancers. Despite the ability of standard treatment agents to achieve therapeutic concentrations in the brain, malignant gliomas are often resistant to alkylating agents. Resveratrol is a plant polyphenol occurring in nuts, berries, grapes, and red wine. Resveratrol crosses the blood‒brain barrier and may influence the central nervous system. Moreover, it influences the enzyme isocitrate dehydrogenase and, more importantly, the resistance to standard treatment via various mechanisms, such as O6-methylguanine methyltransferase. This review summarizes the anticancer effects of resveratrol in various types of brain cancer. Several in vitro and in vivo studies have presented promising results; however, further clinical research is necessary to prove the therapeutic efficacy of resveratrol in brain cancer treatment

    5-Fluorouracil Treatment of CT26 Colon Cancer Is Compromised by Combined Therapy with IMMODIN

    No full text
    Due to the physiological complexity of the tumour, a single drug therapeutic strategy may not be sufficient for effective treatment. Emerging evidence suggests that combination strategies may be important to achieve more efficient tumour responses. Different immunomodulators are frequently tested to reverse the situation for the purpose of improving immune response and minimizing chemotherapy side effects. Immodin (IM) represents an attractive alternative to complement chemotherapy, which can be used to enhance the immune system after disturbances resulting from the side effects of chemotherapy. In the presented study, a model of CT26 tumor-bearing mice was used to investigate the effect of single IM or its combination with 5-fluorouracil (5-FU) on colon cancer cells. Our results highlight that the beneficial role of IM claimed in previous studies cannot be generalised to all chemotherapeutic drugs, as 5-FU toxicity was not increased. On the contrary, the chemotherapeutic anti-cancer efficacy of 5-FU was greatly compromised when combined with IM. Indeed, the combined treatment was significantly less effective regarding the tumour growth and animal survival, most probably due to the increased number of tumour-associated macrophages, and increased 5-FU cytotoxic effect related to kidneys and the liver

    Single Donor FMT Reverses Microbial/Immune Dysbiosis and Induces Clinical Remission in a Rat Model of Acute Colitis

    No full text
    Deviation in the gut microbial composition is involved in various pathologies, including inflammatory bowel disease (IBD). Faecal microbiota transplant (FMT) can act as a promising approach to treat IBD by which changes in microbiome can be reversed and homeostasis restored. Therefore, the aim of this study was to investigate the effect of FMT on the remission of acute inflammatory response using dextran sulfate sodium (DSS)-induced rat colitis model. Faecal microbial communities were analysed using the 16S rRNA approach, and clinical manifestations together with histological/haematological/biochemical/immunological analyses were assessed. Our study demonstrated significant shifts in the dominant species of microbiota under inflammatory conditions induced by DSS and evident restoration effect of FMT treatment on microbial composition. These faecal microbial alterations in FMT-treated rats led to a relative restoration of colon length, and a significant decrease in both epithelium damage and disease severity, which was reflected in lower serum pro-inflammatory cytokine levels. Haematological/biochemical parameters in DSS-treated animals showed signs of anaemia with a significant reduction in red blood cell count together with increasing levels of total bilirubin, creatinine and phosphorus suggesting potential protective effect of FMT. These results support FMT as a valuable therapeutic strategy to control inflammation during acute colitis

    Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease

    No full text
    Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies

    Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells – A potential contribution to the predictive, preventive, and personalized medicine

    No full text
    Background: Cancer management faces multiple obstacles, including resistance to current therapeutic approaches. In the face of challenging microenvironments, cancer cells adapt metabolically to maintain their supply of energy and precursor molecules for biosynthesis and thus sustain rapid proliferation and tumor growth. Among the various metabolic adaptations observed in cancer cells, the altered glucose metabolism is the most widely studied. The aberrant glycolytic modification in cancer cells has been associated with rapid cell division, tumor growth, cancer progression, and drug resistance. The higher rates of glycolysis in cancer cells, as a hallmark of cancer progression, is modulated by the transcription factor hypoxia inducible factor 1 alpha (HIF-1α), a downstream target of the PI3K/Akt signaling, the most deregulated pathway in cancer. Aim of Review: We provide a detailed overview of current, primarily experimental, evidence on the potential effectiveness of flavonoids to combat aberrant glycolysis-induced resistance of cancer cells to conventional and targeted therapies. The manuscript focuses primarily on flavonoids reducing cancer resistance via affecting PI3K/Akt, HIF-1α (as the transcription factor critical for glucose metabolism of cancer cells that is regulated by PI3K/Akt pathway), and key glycolytic mediators downstream of PI3K/Akt/HIF-1α signaling (glucose transporters and key glycolytic enzymes). Key Scientific Concepts of Review: The working hypothesis of the manuscript proposes HIF-1α – the transcription factor critical for glucose metabolism of cancer cells regulated by PI3K/Akt pathway as an attractive target for application of flavonoids to mitigate cancer resistance. Phytochemicals represent a source of promising substances for cancer management applicable to primary, secondary, and tertiary care. However, accurate patient stratification and individualized patient profiling represent crucial steps in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM / 3PM). The article is focused on targeting molecular patterns by natural substances and provides evidence-based recommendations for the 3PM relevant implementation
    corecore