2 research outputs found

    Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cell-substrate impedance sensing (ECIS) – Preliminary study

    No full text
    Introduction In recent years there has been intensified research on medicinal preparations of fungal origin. Some fungal polysaccharides may directly affect the inhibition of cancer cells proliferation which, stopping the cell cycle, leads to apoptosis. One of these substances (component of extract of Ganoderma spp) is extensively tested for its anti-cancer properties on the tumor cell lines. Electric cell-substrate impedance sensing (ECIS) is an in vitro impedance measuring system using alternating current (AC) to determinate the behaviour of the cells in physiological conditions. Objective The aim of the study was to examine the electric properties (resistance, capacitance and impedance) of mouse fibroblasts cell line L929 after treatment by different concentration of crude exopolysaccharides from Ganoderma applanatum (GpEPS) in real time by ECIS technique. Material and Methods For the study, the L929 cell line culture was treated by different concentrations of GpEPS: C1=228.5 µg/mL; C2=22.85 µg/mL; C3=2.285 µg/mL; C4=0.2285 µg/mL; and C5=0.02285 µg/mL. Default optimal frequencies were used: Resistance (R) 4000Hz, Impedance (Z) 16000Hz, Capacitance (C) 64000Hz. Results The study demonstrated that GpEPS had no significant effect on the resistance, capacitance and impedance cells cultures, which implies that there is no significant effect on the physiological processes of L929 fibroblasts. This indicates the possibility of using GpEPS preparation in anti-cancer therapy. Conclusions In the future, following further studies (comprising in preventive and therapeutic actions), GpEPS can be safely used in anti-cancer therapy which does not cause side-effects or damage to healthy cells

    Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cell-substrate impedance sensing (ECIS) – Preliminary study

    No full text
    Introduction In recent years there has been intensified research on medicinal preparations of fungal origin. Some fungal polysaccharides may directly affect the inhibition of cancer cells proliferation which, stopping the cell cycle, leads to apoptosis. One of these substances (component of extract of Ganoderma spp) is extensively tested for its anti-cancer properties on the tumor cell lines. Electric cell-substrate impedance sensing (ECIS) is an in vitro impedance measuring system using alternating current (AC) to determinate the behaviour of the cells in physiological conditions. Objective The aim of the study was to examine the electric properties (resistance, capacitance and impedance) of mouse fibroblasts cell line L929 after treatment by different concentration of crude exopolysaccharides from Ganoderma applanatum (GpEPS) in real time by ECIS technique. Material and Methods For the study, the L929 cell line culture was treated by different concentrations of GpEPS: C1=228.5 µg/mL; C2=22.85 µg/mL; C3=2.285 µg/mL; C4=0.2285 µg/mL; and C5=0.02285 µg/mL. Default optimal frequencies were used: Resistance (R) 4000Hz, Impedance (Z) 16000Hz, Capacitance (C) 64000Hz. Results The study demonstrated that GpEPS had no significant effect on the resistance, capacitance and impedance cells cultures, which implies that there is no significant effect on the physiological processes of L929 fibroblasts. This indicates the possibility of using GpEPS preparation in anti-cancer therapy. Conclusions In the future, following further studies (comprising in preventive and therapeutic actions), GpEPS can be safely used in anti-cancer therapy which does not cause side-effects or damage to healthy cells
    corecore