3 research outputs found

    Dipeptides of <i>S</i>-Substituted Dehydrocysteine as Artzyme Building Blocks: Synthesis, Complexing Abilities and Antiproliferative Properties

    No full text
    Background: Dehydropeptides are analogs of peptides containing at least one conjugate double bond between α,β-carbon atoms. Its presence provides unique structural properties and reaction centre for chemical modification. In this study, the series of new class of dipeptides containing S-substituted dehydrocysteine with variety of heterocyclic moieties was prepared. The compounds were designed as the building blocks for the construction of artificial metalloenzymes (artzymes). Therefore, the complexing properties of representative compounds were also evaluated. Furthermore, the acknowledged biological activity of natural dehydropeptides was the reason to extend the study for antiproliferative action of against several cancer cell lines. Methods: The synthetic strategy involves glycyl and phenylalanyl-(Z)-β-bromodehydroalanine as a substrate in one pot addition/elimination reaction of thiols. After deprotection of N-terminal amino group the compounds with triazole ring were tested as complexones for copper(II) ions using potentiometric titration and spectroscopic techniques (UV-Vis, CD, EPR). Finally, the antiproliferative activity was evaluated by sulforhodamine B assay. Results and Conclusions: A simple and efficient procedure for preparation of dipeptides containing S-substituded dehydrocysteine was provided. The peptides containing triazole appeared to be strong complexones of copper(II) ions. Some of the peptides exhibited promising antiproliferative activities against number of cancer cell lines, including cell lines resistant to widely used anticancer agent

    Structural patterns enhancing the antibacterial activity of metallacarborane-based antibiotics

    No full text
    Healthcare systems heavily rely on antibiotics to treat bacterial infections but widespread of the multidrug-resistant bacteria puts this strategy in danger. Novel drugs capable of overcoming current resistances are needed if our ability to treat bacterial infections is to be maintained. Boron clusters offer a valuable possibility to create a new class of antibiotics and expand antibiotic’s chemical space beyond conventional carbon-based molecules. In this work, we identified the two promising structural patterns providing cobalta bis(dicarbollide)(COSAN)-based compounds with potent and selective activity toward Staphylococcus aureus (including clinical strains): introduction of the α-amino acid amide and addition of iodine directly to the metallacarborane cage. Furthermore, we found that proper hydrophilic-lipophilic balance is crucial for the selective activity of the tested compounds toward S. aureus over mammalian cells. The patterns proposed in this paper can be useful in the development of metallacarborane-based antibiotics with potent antibacterial properties and low cytotoxicity
    corecore