49 research outputs found

    Release of Type 2 Cytokines by Epithelial Cells of Nasal Polyps

    Get PDF
    Background. T2 inflammation of chronic rhinosinusitis with nasal polyps (CRSwNP) may be influenced by epithelial cytokines release (TSLP, IL-25, and IL-33). We investigated the release of TSLP, IL-25, and IL-33 by epithelial CRSwNP cells compared to epithelial sinus mucosa cells of patients with chronic rhinosinusitis without nasal polyps (CRSsNP). Methods. IL-25, IL-33, and TSLP were measured by ELISA in the supernatant of cell cultures derived by CRSwNP (9 patients, 6 atopic) and CRSsNP (7 patients, 2 atopic) in baseline condition and following stimulation with Dermatophagoides pteronyssinus (DP), Aspergillus fumigatus (AF), and poly(I:C). Results. CRSwNP epithelial cells released increased levels of IL-25 (from 0.12 ± 0.06 pg/ml to 0.27 ± 0.1 pg/ml, p<0.01) and TSLP (from 0.77 ± 0.5 pg/ml to 2.53 ± 1.17 pg/ml, p<0.001) following poly(I:C) stimulation, while CRSsNP epithelial cells released increased levels of IL-25 and IL-33 following AF and DP stimulation, respectively (IL-25: from 0.18 ± 0.07 pg/ml to 0.51 ± 0.1 pg/ml, p<0.001; IL-33: from 2.57 ± 1.3 pg/ml to 5.7 ± 3.1 pg/ml, p<0.001). Conclusions. CRSwNP epithelial cells release TSLP and IL-25 when stimulated by poly(I:C) but not by DP or AF, suggesting that viral infection may contribute to maintain and amplify the T2 immune response seen in CRSwNP

    Predictors of cardiovascular disease in asthma and chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is a common comorbidity in patients with chronic airway obstruction, and is associated with systemic inflammation and airway obstruction. The aim of this study was to evaluate the predictors of CVD in two different conditions causing chronic airway obstruction, asthma and COPD. METHODS: Lung function tests, clinical and echocardiographic data were assessed in 229 consecutive patients, 100 with asthma and 129 with COPD. CVD was classified into: pressure overload (PO) and volume overload (VO). Sub-analysis of patients with ischemic heart disease (IHD) and pulmonary hypertension (PH) was also performed. RESULTS: CVD was found in 185 patients (81%: 51% COPD and 30% asthmatics) and consisted of PO in 42% and of VO in 38% patients. COPD patients, as compared to asthmatics, had older age, more severe airway obstruction, higher prevalence of males, of smokers, and of CVD (91% vs 68%), either PO (46% vs 38%) or VO (45% vs 30%). CVD was associated with older age and more severe airway obstruction both in asthma and COPD. In the overall patients the predictive factors of CVD were age, COPD, and male sex; those of PO were COPD, BMI, VC, FEV(1) and MEF(50) and those of VO were age, VC and MEF(50). In asthma, the predictors of CVD were VC, FEV(1), FEV(1) /VC%, and PaO(2), those of PO were VC, FEV(1) and FEV(1) /VC%, while for VO there was no predictor. In COPD the predictors of CVD were age, GOLD class and sex, those of VO age, VC and MEF(50), and that of PO was BMI. Sub-analysis showed that IHD was predicted by COPD, age, BMI and FEV(1), while PH (found only in 25 COPD patients), was predicted by VO (present in 80% of the patients) and FEV(1). In subjects aged 65 years or more the prevalence of CVD, PO and VO was similar in asthmatic and COPD patients, but COPD patients had higher prevalence of males, smokers, IHD, PH, lower FEV(1) and higher CRP. CONCLUSIONS: The results of this study indicate that cardiovascular diseases are frequent in patients with chronic obstructive disorders, particularly in COPD patients. The strongest predictors of CVD are age and airway obstruction. COPD patients have higher prevalence of ischemic heart disease and pulmonary hypertension. In the elderly the prevalence of PO and VO in asthma and COPD patients is similar

    Asthmatic Patients with Vitamin D Deficiency have Decreased Exacerbations after Vitamin Replacement

    Get PDF
    Background: Intervention studies with vitamin D in asthma are inconclusive for several reasons, such as inadequate dosing or duration of supplementation or uncontrolled baseline vitamin D status. Our aim was to evaluate the benefit of long term vitamin D add-on in asthmatic patients with actual vitamin D deficiency, that is a serum 25-hydroxy vitamin D (25-OHD ) below 20 ng/mL. Methods: Serum 25-OHD, asthma exacerbations, spirometry and inhaled corticosteroids (CS) dose were evaluated in a cohort of 119 asthmatic patients. Patients with deficiency were evaluated again after one year vitamin supplementation. Results: 25-OHD was low in 111 patients and was negatively related to exacerbations (p &lt; 0.001), inhaled CS dose (p = 0.008) and asthma severity (p = 0.001). Deficiency was found in 90 patients, 55 of whom took the supplement regularly for one year, while 24 discontinued the study and 11 were not adherent. Patients with vitamin D deficiency after 12 months supplementation showed significant decrease of exacerbations (from 2.6 ± 1.2 to 1.6 ± 1.1, p &lt; 0.001), circulating eosinophils (from 395 ± 330 to 272 ± 212 106/L, p &lt; 0.001), and need of oral CS courses (from 35 to 20, p = 0.007) and improvement of airway obstruction. Conclusions: Asthma exacerbations are favored by vitamin D deficiency and decrease after long-term vitamin D replacement. Patients who are vitamin D deficient benefit from vitamin D supplementation
    corecore