6 research outputs found

    Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding.</p> <p>Results</p> <p>As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1<sub>RBD </sub>or H2<sub>RBD</sub>). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1<sub>RBD </sub>as well as H2<sub>RBD</sub>, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell.</p> <p>Conclusion</p> <p>Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes.</p

    Lentiviral transduction of immune cells.

    No full text
    International audienceGene transfer into mammalian cells has been of crucial importance for studies determining the role of specific genes in the differentiation and cell fate of various hematopoietic lineages. Until recently, the majority of these studies were performed in transformed cell lines due to difficulties in achieving levels of transfection of greater than 1-3% in primary hematopoietic cells. Vectors based on retrovirus and lentivirus backbones have revolutionized our ability to transfer genes into primary hematopoietic cells. These vectors have allowed extensive ex vivo and in vivo studies following introduction of a gene of interest and have been used clinically in individuals suffering from cancers, infections, and genetic diseases. Ex vivo lentiviral gene transfer can result in efficient transduction of progenitor cells (>80%) that can then be further differentiated into immune lineage cells including T, B, dendritic, or natural killer cells. Alternatively, differentiated immune cells can themselves be transduced ex vivo with lentiviral vectors. Here, we discuss optimization of technologies for human immunodeficiency virus (HIV)-based gene transfer into murine and human progenitor and immune cell lineages

    In vivo and ex vivo gene transfer in thymocytes and thymocyte precursors.

    No full text
    International audienceThe thymus provides a specialized environment allowing the differentiation of T lymphocytes from bone marrow-derived progenitor cells. We and others have demonstrated that gene transfer into distinct thymocyte populations can be obtained, both in vivo and ex vivo, using lentiviral vectors. Here, we describe techniques for intrathymic lentiviral transduction in mice, using a surgical approach wherein the thoracic cavity is exposed as well as a significantly less invasive strategy wherein virions are directly injected through the skin. Moreover, thymocyte differentiation from murine and human progenitors is now feasible in vitro, under conditions wherein the Notch and IL-7 signaling pathways are activated. We describe methods allowing transduction of murine and human progenitors and their subsequent differentiation into more mature thymocytes. Conditions for lentiviral gene transfer into more differentiated human thymocyte subsets are also presented. Optimization of technologies for HIV-based gene transfer into murine and human thymocyte progenitors will advance strategies aimed at modulating T-cell differentiation and function in-vivo; approaches potentially targeting patients with genetic and acquired immunodeficiencies as well as immune-sensitive tumors. Furthermore, this technology will foster the progression of basic research aimed at elucidating molecular aspects of T-cell differentiation in mice and humans
    corecore