272 research outputs found
Image mining: issues, frameworks and techniques
[Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an
interdisciplinary endeavor that draws upon expertise in
computer vision, image processing, image retrieval, data
mining, machine learning, database, and artificial
intelligence. Despite the development of many
applications and algorithms in the individual research
fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper
Image mining: trends and developments
[Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining
An information-driven framework for image mining
[Abstract]: Image mining systems that can automatically extract semantically meaningful information (knowledge) from image data are increasingly in demand. The fundamental challenge in image mining is to determine how low-level, pixel representation contained in a raw image or
image sequence can be processed to identify high-level spatial objects and relationships. To meet
this challenge, we propose an efficient information-driven framework for image mining. We distinguish four levels of information: the Pixel Level, the Object Level, the Semantic Concept Level, and the Pattern and Knowledge Level. High-dimensional indexing schemes and retrieval
techniques are also included in the framework to support the flow of information among the levels. We believe this framework represents the first step towards capturing the different levels of information present in image data and addressing the issues and challenges of discovering useful
patterns/knowledge from each level
Quantifying Aspect Bias in Ordinal Ratings using a Bayesian Approach
User opinions expressed in the form of ratings can influence an individual's
view of an item. However, the true quality of an item is often obfuscated by
user biases, and it is not obvious from the observed ratings the importance
different users place on different aspects of an item. We propose a
probabilistic modeling of the observed aspect ratings to infer (i) each user's
aspect bias and (ii) latent intrinsic quality of an item. We model multi-aspect
ratings as ordered discrete data and encode the dependency between different
aspects by using a latent Gaussian structure. We handle the
Gaussian-Categorical non-conjugacy using a stick-breaking formulation coupled
with P\'{o}lya-Gamma auxiliary variable augmentation for a simple, fully
Bayesian inference. On two real world datasets, we demonstrate the predictive
ability of our model and its effectiveness in learning explainable user biases
to provide insights towards a more reliable product quality estimation.Comment: Accepted for publication in IJCAI 201
Leveraging Old Knowledge to Continually Learn New Classes in Medical Images
Class-incremental continual learning is a core step towards developing
artificial intelligence systems that can continuously adapt to changes in the
environment by learning new concepts without forgetting those previously
learned. This is especially needed in the medical domain where continually
learning from new incoming data is required to classify an expanded set of
diseases. In this work, we focus on how old knowledge can be leveraged to learn
new classes without catastrophic forgetting. We propose a framework that
comprises of two main components: (1) a dynamic architecture with expanding
representations to preserve previously learned features and accommodate new
features; and (2) a training procedure alternating between two objectives to
balance the learning of new features while maintaining the model's performance
on old classes. Experiment results on multiple medical datasets show that our
solution is able to achieve superior performance over state-of-the-art
baselines in terms of class accuracy and forgetting.Comment: Accepted to AAAI2
- …