2 research outputs found

    Objectively measured physical activity, sedentary behavior, and genetic predisposition to obesity in U.S. Hispanics/Latinos: Results from the hispanic community health study/study of Latinos (HCHS/SOL)

    Get PDF
    Studies using self-reported data suggest a gene-physical activity interaction on obesity, yet the influence of sedentary behavior, distinct from a lack of physical activity, on genetic associations with obesity remains unclear. We analyzed interactions of accelerometer-measured moderate to vigorous physical activity (MVPA) and time spent sedentary with genetic variants on obesity among 9,645 U.S. Hispanics/Latinos. An overall genetic risk score (GRS), a central nervous system (CNS)-related GRS, and a non-CNS-related GRS were calculated based on 97 BMIassociated single nucleotide polymorphisms (SNPs). Genetic association with BMI was stronger in individuals with lower MVPA (first tertile) versus higher MVPA (third tertile) (b = 0.78 kg/m2 [SE, 0.10 kg/m2] vs. 0.39 kg/m2 [0.09 kg/m2] per SD increment of GRS; Pinteraction = 0.005), and in those with more time spent sedentary (third tertile) versus less time spent sedentary (first tertile) (b = 0.73 kg/m2 [SE, 0.10 kg/m2] vs. 0.44 kg/m2 [0.09 kg/m2]; Pinteraction = 0.006). Similar significant interaction patterns were observed for obesity risk, body fat mass, fat percentage, fat mass index, and waist circumference, but not for fat-free mass. The CNS-related GRS, but not the non-CNS-related GRS, showed significant interactions with MVPA and sedentary behavior, with effects on BMI and other adiposity traits. Our data suggest that both increasing physical activity and reducing sedentary behavior may attenuate genetic associations with obesity, although the independence of these interaction effects needs to be investigated further

    Calibration of activity-related energy expenditure in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

    Get PDF
    Objectives: Usual physical activity (PA) is a complex exposure and typical instruments to measure aspects of PA are subject to measurement error, from systematic biases and biological variability. This error can lead to biased estimates of associations between PA and health outcomes. We developed a calibrated physical activity measure that adjusts for measurement error in both self-reported and accelerometry measures of PA in adults from the US Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a community-based cohort study. Design: Total energy expenditure (TEE) from doubly labeled water and resting energy expenditure (REE) from indirect calorimetry were measured in 445 men and women aged 18–74 years in 2010–2012, as part of the HCHS/SOL Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS). Measurements were repeated in a subset (N = 98) 6 months later. Method: Calibration equations for usual activity-related energy expenditure (AEE = 0.90 × TEE-REE) were developed by regressing this objective biomarker on self-reported PA and sedentary behavior, Actical accelerometer PA, and other subject characteristics. Results: Age, weight and height explained a significant amount of variation in AEE. Actical PA and wear-time were important predictors of AEE; whereas, self-reported PA was not independently associated with AEE. The final calibration equation explained fifty percent of variation in AEE. Conclusions: The developed calibration equations can be used to obtain error-corrected associations between PA and health outcomes in HCHS/SOL. Our study represents a unique opportunity to understand the measurement characteristics of PA instruments in an under-studied Hispanic/Latino cohort
    corecore