1,942 research outputs found
Electrical characterization of the soft breakdown failure mode in MgO layers
The soft breakdown (SBD) failure mode in 20 nm thick MgO dielectric layers grown on Si substrates was investigated. We show that during a constant voltage stress, charge trapping and progressive breakdown coexist, and that the degradation dynamics is captured by a power-law time dependence. We also show that the SBD current-voltage (I-V) characteristics follow the power-law model I = aVb typical of this conduction mechanism but in a wider voltage window than the one reported in the past for SiO2. The relationship between the magnitude of the current and the normalized differential conductance was analyzed
The X-ray Ridge Surrounding Sgr A* at the Galactic Center
We present the first detailed simulation of the interaction between the
supernova explosion that produced Sgr A East and the wind-swept inner ~ 2-pc
region at the Galactic center. The passage of the supernova ejecta through this
medium produces an X-ray ridge ~ 9'' to 15'' to the NE of the supermassive
black hole Sagittarius A* (Sgr A*). We show that the morphology and X-ray
intensity of this feature match very well with recently obtained Chandra
images, and we infer a supernova remnant age of less than 2,000 years. This
young age--a factor 3--4 lower than previous estimates--arises from our
inclusion of stellar wind effects in the initial (pre-explosion) conditions in
the medium. The supernova does not clear out the central ~ 0.2-pc region around
Sgr~A* and does not significantly alter the accretion rate onto the central
black hole upon passage through the Galactic center.Comment: 10 pages, 3 figures, submitted to ApJ
The relationships between oral language and reading instruction: Evidence from a computational model of reading
Reading acquisition involves learning to associate visual symbols with spoken language. Multiple lines of evidence indicate that instruction on the relationship between spellings and sounds may be particularly important.However, it is unclear whether the effectiveness of this form of instruction depends on pre-existing oral language knowledge.To investigate this issue, we developed a series of computational models of reading incorporating orthographic, phonological and semantic processing to simulate bothartificialand natural orthographic learning conditions in adults and children. We exposed the models to instruction focused on spelling-sound or spelling-meaning relationships, and tested the influence of the models' oral language proficiency on the effectiveness of these training regimes. Overall, the simulations indicated thatoral language proficiency is a vital foundation for reading acquisition, and may modulate the effectiveness of reading instruction. These results provide a computational basis for the Simple View of Reading,and emphasise the importance of both oral language knowledge and spelling-sound instructionin the initial stages of learning to read
Magnetic field structure due to the global velocity field in spiral galaxies
We present a set of global, self-consistent N-body/SPH simulations of the
dynamic evolution of galactic discs with gas and including magnetic fields. We
have implemented a description to follow the evolution of magnetic fields with
the ideal induction equation in the SPH part of the Vine code. Results from a
direct implementation of the field equations are compared to a representation
by Euler potentials, which pose a div(B)-free description, an constraint not
fulfilled for the direct implementation. All simulations are compared to an
implementation of magnetic fields in the Gadget code which includes also
cleaning methods for div(B).
Starting with a homogeneous seed field we find that by differential rotation
and spiral structure formation of the disc the field is amplified by one order
of magnitude within five rotation periods of the disc. The amplification is
stronger for higher numerical resolution. Moreover, we find a tight connection
of the magnetic field structure to the density pattern of the galaxy in our
simulations, with the magnetic field lines being aligned with the developing
spiral pattern of the gas. Our simulations clearly show the importance of
non-axisymmetry for the evolution of the magnetic field.Comment: 17 pages, 18 figure
Equilibrium Configurations of Strongly Magnetized Neutron Stars with Realistic Equations of State
We investigate equilibrium sequences of magnetized rotating stars with four
kinds of realistic equations of state (EOSs) of SLy (Douchin et al.), FPS
(Pandharipande et al.), Shen (Shen et al.), and LS (Lattimer & Swesty).
Employing the Tomimura-Eriguchi scheme to construct the equilibrium
configurations. we study the basic physical properties of the sequences in the
framework of Newton gravity. In addition we newly take into account a general
relativistic effect to the magnetized rotating configurations. With these
computations, we find that the properties of the Newtonian magnetized stars,
e.g., structure of magnetic field, highly depends on the EOSs.
The toroidal magnetic fields concentrate rather near the surface for Shen and
LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected
by the toroidal configurations. Paying attention to the stiffness of the EOSs,
we analyze this tendency in detail. In the general relativistic stars, we find
that the difference due to the EOSs becomes small because all the employed EOSs
become sufficiently stiff for the large maximum density, typically greater than
. The maximum baryon mass of the magnetized stars
with axis ratio increases about up to twenty percents for that of
spherical stars. We furthermore compute equilibrium sequences at finite
temperature, which should serve as an initial condition for the hydrodynamic
study of newly-born magnetars. Our results suggest that we may obtain
information about the EOSs from the observation of the masses of magnetars.Comment: submitted to MNRA
Nest cover and faecal glucocorticoid metabolites are linked to hatching success and telomere length in breeding Common Eiders (Somateria mollissima)
Habitat-associated crypsis may affect perceived predation vulnerability, selecting for different predator avoidance strategies. Glucocorticoids could mediate the adjustment of escape responses to the extent of crypsis, introducing an overlooked source of variation in glucocorticoid-fitness relationships. However, prolonged exposure to elevated glucocorticoids may be costly, leading to accelerated telomere loss and, consequently, senescence. Here, we examined how nest cover and immunoreactive faecal glucocorticoid metabolite (fGCM) levels are linked to hatching success and telomere length in breeding female Common Eiders (Somateria mollissima (L., 1758)). We hypothesized that the degree of nest crypsis, reflecting differences in perceived predation risk, would moderate the relationship between reproductive success and fGCM levels. We also expected that telomere length would be shorter in birds with higher glucocorticoid concentration. Results showed that individuals with high fGCM levels had higher hatching success in nests with low cover, while low fGCM levels were more successful in well-concealed nests. We found that shorter telomeres were associated with high fGCM in nesting sites offering little cover and with low fGCM in well-concealed ones. This study provides the first evidence of habitat-dependent moderation of the relationships between stress physiology, telomere length and hatching success.Peer reviewe
Multi-technique characterisation of MOVPE-grown GaAs on Si
The heterogeneous integration of III-V materials on a Si CMOS platform offers tremendous prospects for future high speed and low power logic applications. That said this integration generates immense scientific and technological challenges. In this work multi-technique characterisation is used to investigate properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Si substrates - (100) with 4â° offset towards - under various growth conditions. This being a crucial first step towards the production of III-V template layers with a relatively lower density of defects for selective epitaxial overgrowth of device quality material. The optical and structural properties of heteroepitaxial GaAs are first investigated by micro-Raman spectroscopy and photoluminescence and reflectance measurements. High-resolution X-ray diffraction (HR-XRD) is used to investigate structural properties. Advanced XRD techniques, including double-axis diffraction and X-ray crystallographic mapping are used to evaluate degrees of relaxation and distribution of the grain orientations in the epilayers, respectively. Results obtained from the different methodologies are compared in an attempt to understand growth kinetics of the materials system. The GaAs overlayer grown with annealing at 735â°C following As predeposition at 500â°C shows the best crystallinity. Close inspection confirms the growth of epitaxial GaAs preferentially oriented along (100) embedded in a highly-textured polycrystalline structure
X-MAS2: Study Systematics on the ICM Metallicity Measurements
(Abridged)The X-ray measurements of the ICM metallicity are becoming more
frequent due to the availability of powerful X-ray telescope with excellent
spatial and spectral resolutions. The information which can be extracted from
the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with
respect to the Iron abundance is extremely important to better understand the
stellar formation and its evolutionary history. In this paper we investigate
possible source of bias connected to the plasma physics when recovering metal
abundances from X-ray spectra. To do this we analyze 6 simulated galaxy
clusters processed through the new version of our X-ray MAp Simulator, which
allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing
the spectroscopic results to the input values we find that: i) Fe is recovered
with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at
intermediate temperatures, however, we find a systematic overestimate which
depends on the number counts; ii) O is well recovered in cold clusters, while
in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a
weak line, the measurement of Mg is always difficult; despite of this, for cold
systems (T<2 keV) we do not find any systematic behavior, while for very hot
systems (T>5 keV) the spectroscopic measurement may be strongly overestimated
up to a factor of 4; iv) Si is well recovered for all the clusters in our
sample. We investigate in detail the nature of the systematic effects and
biases found. We conclude that they are mainly connected with the
multi-temperature nature of the projected observed spectra and to the intrinsic
limitation of the XMM-Newton EPIC spectral resolution that does not always
allow to disentangle among the emission lines produced by different elements.Comment: (e.g.: 17 pages, 8 figures, accepted for publication in the
Astrophysical Journal, updated discussion to match published version-new
section:6.3
Does asymmetric gene flow among matrilines maintain the evolutionary potential of the European eel?
Using evolutionary theory to predict the dynamics of populations is one of the aims of evolutionary conservation. In endangered species, with geographic range extending over continuous areas, the predictive capacity of evolutionary-based conservation measures greatly depends on the accurate identification of reproductive units. The endangered European eel (Anguilla anguilla) is a highly migratory fish species with declining population due to a steep recruitment collapse in the beginning of the 1980s. Despite punctual observations of genetic structure, the population is viewed as a single panmictic reproductive unit. To understand the possible origin of the detected structure in this species, we used a combination of mitochondrial and nuclear loci to indirectly evaluate the possible existence of cryptic demes. For that, 403 glass eels from three successive cohorts arriving at a single location were screened for phenotypic and genetic diversity, while controlling for possible geographic variation. Over the 3Â years of sampling, we consistently identified three major matrilines which we hypothesized to represent demes. Interestingly, not only we found that population genetic models support the existence of those matriline-driven demes over a completely panmictic mode of reproduction, but also we found evidence for asymmetric gene flow amongst those demes. We uphold the suggestion that the detection of demes related to those matrilines reflect a fragmented spawning ground, a conceptually plausible consequence of the low abundance that the European eel has been experiencing for three decades. Furthermore, we suggest that this cryptic organization may contribute to the maintenance of the adaptive potential of the species
- âŠ