18 research outputs found

    Combination-Feeding Causes Differences in Aspects of Systemic and Mucosal Immune Cell Phenotypes and Functions Compared to Exclusive Sow-Rearing or Formula-Feeding in Piglets

    No full text
    Combination feeding (human milk and formula) is common and influences immune development compared to exclusive breastfeeding. Infant formulas contain prebiotics, which influence immune development. Herein, immune development of combination-fed (CF), sow-reared (SR) and formula-fed (FF) piglets, and the effect of prebiotics was tested. Piglets (n = 47) were randomized to: SR, FF, CF, FF+prebiotic (FP), and CF+prebiotic (CP). FP and CP received formula with galactooligosaccharides and inulin (4 g/L in a 4:1 ratio). CF and CP piglets were sow-reared for until d5 and then rotated between a sow and formula every 12 h. On day 21, piglets received an intraperitoneal injection of lipopolysaccharide 2 h prior to necropsy. Immune cells from blood, mesenteric lymph nodes (MLN), and spleen were phenotyped. Classical (nitric oxide synthase) and alternative (arginase activity) activation pathways were measured in isolated macrophages. Serum IL-6 and TNF-α were measured by ELISA. SR piglets had lower (p < 0.0001) CD4+ T-helper cells and higher (p < 0.0001) B-cells in PBMC than all other groups. CP piglets had higher (p < 0.0001) arginase activity compared to all other groups. FF piglets had higher (p < 0.05) IL-6 compared to both CF and SR, but were similar to FP and CP. Thus, CF, with or without prebiotics, differentially affected immunity compared to exclusively fed groups

    Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model

    No full text
    Milk oligosaccharides (OS) shape microbiome structure and function, but their relative abundances differ between species. Herein, the impact of the human milk oligosaccharides (HMO) (2′-fucosyllactose [2′FL] and lacto-N-neotetraose [LNnT]) and OS isolated from bovine milk (BMOS) on microbiota composition and volatile fatty acid (VFA) concentrations in ascending colon (AC) contents and feces was assessed. Intact male piglets received diets either containing 6.5 g/L BMOS (n = 12), 1.0 g/L 2′FL + 0.5 g/L LNnT (HMO; n = 12), both (HMO + BMOS; n = 10), or neither (CON; n = 10) from postnatal day (PND) 2 to 34. Microbiota were assessed by 16S rRNA gene sequencing and real-time PCR, and VFA were measured by gas chromatography. The microbiota was affected by OS in an intestine region-specific manner. BMOS reduced (p < 0.05) microbial richness in the AC, microbiota composition in the AC and feces, and acetate concentrations in AC, regardless of HMO presence. HMO alone did not affect overall microbial composition, but increased (p < 0.05) the relative proportion of specific taxa, including Blautia, compared to other groups. Bacteroides abundance was increased (p < 0.05) in the AC by BMOS and synergistically by BMOS + HMO in the feces. Distinct effects of HMO and BMOS suggest complementary and sometimes synergistic benefits of supplementing a complex mixture of OS to formula

    Dietary (1,3/1,6)-β-d-glucan decreases transforming growth factor β expression in the lung of the neonatal piglet

    No full text
    Identification and characterization of compounds that enhance the growth, development, and health of infants who are not breastfed continues to be a goal for nutritional science. This study explored the effects of one dietary component, (1,3/1,6)-. β-. d-glucan (Wellmune WGP), on lung immune development in the neonatal piglet. The hypothesis was that supplementation with WGP, a pathogen-associated molecular pattern, would enhance pathogen-responsive elements of the immune system, for instance, by increasing the size of the cytotoxic T-cell population or the expression of inflammatory cytokines. Piglets were fed a control formula or formula plus WGP at 1.8, 18, or 90 mg/kg body weight per day. Serum, thoracic lymph nodes (TLNs), mediastinal lymph nodes, and lung were collected at days 7 or 21. Immune parameters including tissue messenger RNA (mRNA) expression and T-cell phenotypes were analyzed. Normal developmental changes were observed, with a decrease in T-helper cells and an increase in cytotoxic T cells in both TLN and mediastinal lymph node, but there was no effect of WGP. Dietary WGP reduced the mRNA expression of transforming growth factor (TGF) β2 and tended to reduce the mRNA expression of TGF-. β1 in lung tissue. With the exception of reducing TGF-. β mRNA in the lung and tending to decrease the ratio of T helper to cytotoxic T cell in the TLN, dietary WGP did not affect lung-associated adaptive immunity in piglets. © 2013 Elsevier Inc

    Dietary (1,3/1,6)-β-d-glucan decreases transforming growth factor β expression in the lung of the neonatal piglet

    No full text
    Identification and characterization of compounds that enhance the growth, development, and health of infants who are not breastfed continues to be a goal for nutritional science. This study explored the effects of one dietary component, (1,3/1,6)-. β-. d-glucan (Wellmune WGP), on lung immune development in the neonatal piglet. The hypothesis was that supplementation with WGP, a pathogen-associated molecular pattern, would enhance pathogen-responsive elements of the immune system, for instance, by increasing the size of the cytotoxic T-cell population or the expression of inflammatory cytokines. Piglets were fed a control formula or formula plus WGP at 1.8, 18, or 90 mg/kg body weight per day. Serum, thoracic lymph nodes (TLNs), mediastinal lymph nodes, and lung were collected at days 7 or 21. Immune parameters including tissue messenger RNA (mRNA) expression and T-cell phenotypes were analyzed. Normal developmental changes were observed, with a decrease in T-helper cells and an increase in cytotoxic T cells in both TLN and mediastinal lymph node, but there was no effect of WGP. Dietary WGP reduced the mRNA expression of transforming growth factor (TGF) β2 and tended to reduce the mRNA expression of TGF-. β1 in lung tissue. With the exception of reducing TGF-. β mRNA in the lung and tending to decrease the ratio of T helper to cytotoxic T cell in the TLN, dietary WGP did not affect lung-associated adaptive immunity in piglets. © 2013 Elsevier Inc

    Intestinal and systemic immune development and response to vaccination are unaffected by dietary (1,3/1,6)-β-D-glucan supplementation in neonatal piglets

    No full text
    Infants are susceptible to infections in early life and must rely on their innate immune system for protection. β-Glucans potentiate immune responses. Therefore, we evaluated the influence of purified yeast (1,3/1,6)-β-D- glucan (Wellmune WGP, here referred to as WGP) on the development of the gastrointestinal tract and the intestinal and systemic immune systems in neonatal piglets. Piglets were fed formula containing 0 (control), 1.8, 18, or 90 mg WGP/kg body weight (BW) and were vaccinated against human influenza. Piglets were euthanized at 7 or 21 days of age. Piglet weight and small intestinal length and weight were unaffected by dietary WGP. In addition, WGP did not affect ileal crypt depth, villus height, or ascending colon cuff depth. Immune parameters not affected by WGP supplementation included T cell phenotypes, cytokine gene expression, and cell proliferation. However, vaccination and developmental effects were seen. Overall, the doses of 1.8, 18, and 90 mg/kg BW of dietary WGP had no effect on intestinal or immune development and did not improve the antibody response to vaccination in neonatal piglets. Copyright © 2012, American Society for Microbiology. All Rights Reserved

    Evaluation of 2’-Fucosyllactose and Bifidobacterium longum Subspecies infantis on Growth, Organ Weights, and Intestinal Development of Piglets

    No full text
    Human milk is rich in oligosaccharides that influence intestinal development and serve as prebiotics for the infant gut microbiota. Probiotics and 2’-fucosyllactose (2’-FL) added individually to infant formula have been shown to influence infant development, but less is known about the effects of their synbiotic administration. Herein, the impact of formula supplementation with 2’-fucosyllactose (2’-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26), or 2’-FL + Bi-26 on weight gain, organ weights, and intestinal development in piglets was investigated. Two-day-old piglets (n = 53) were randomized in a 2 × 2 design to be fed a commercial milk replacer ad libitum without (CON) or with 1.0 g/L 2’-FL. Piglets in each diet were further randomized to receive either glycerol stock alone or Bi-26 (109 CFU) orally once daily. Body weights and food intake were monitored from postnatal day (PND) 2 to 33/34. On PND 34/35, animals were euthanized and intestine, liver and brain weights were assessed. Intestinal samples were collected for morphological analyses and measurement of disaccharidase activity. Dry matter of cecum and colon contents and Bifidobacterium longum subsp. infantis abundance by RT-PCR were also measured. All diets were well tolerated, and formula intake did not differ among the treatment groups. Daily body weights were affected by 2’-FL, Bi-26, and day, but no interaction was observed. There was a trend (p = 0.075) for greater total body weight gain in CON versus all other groups. Jejunal and ascending colon histomorphology were unaffected by treatment; however, there were main effects of 2’-FL to increase (p = 0.040) and Bi-26 to decrease (p = 0.001) ileal crypt depth. The addition of 2’-FL and/or Bi-26 to milk replacer supported piglet growth with no detrimental effects on body and organ weights, or intestinal structure and function

    Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells

    No full text
    We have developed a novel molecular methodology that utilizes stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in the developing human neonate. Since nutrition exerts a major role in regulating neonatal intestinal development and function, our goal was to identify gene sets (combinations) that are differentially regulated in response to infant feeding. For this purpose, fecal mRNA was isolated from exclusively breast-fed (n = 12) and formula-fed (n = 10) infants at 3 mo of age. Linear discriminant analysis was successfully used to identify the single genes and the two- to three-gene combinations that best distinguish the feeding groups. In addition, putative “master” regulatory genes were identified using coefficient of determination analysis. These results support our premise that mRNA isolated from stool has value in terms of characterizing the epigenetic mechanisms underlying the developmentally regulated transcriptional activation/repression of genes known to modulate gastrointestinal function. As larger data sets become available, this methodology can be extended to validation and, ultimately, identification of the main nutritional components that modulate intestinal maturation and function
    corecore