12 research outputs found
The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet
Being one of the most common foodborne protozoa worldwide, chronic toxoplasmosis caused by Toxoplasma gondii (T. gondii) could contribute significantly to the etiology of several mental disorders. The neurotropic parasite can directly influence the gut microbiota, causing inflammation with subsequent degradation of tryptophan required for parasite growth. Research in humans and animals shows that the gut microbiome is involved in the regulation of brain serotonergic pathways through the microbiota–gut–brain axis. Since the serotonin system is extensively interconnected with the body’s master clock through neuronal networks, the microbiota has been suggested as a potential mediator, fine-tuning circadian misalignment, following a reciprocal relationship with human eating patterns. Furthermore, adherence to an intermittent fasting diet can improve the serotonin biosynthesis pathway in the intestines and improve cognitive function. This review aims to explain the role of fasting in parasite-driven gut microbiome perturbation and the mechanisms by which Toxoplasma infection alters brain function. Due to its significant impact on social–economic status, diet patterns, microbiota disruption, circadian rhythm, chronic inflammation, and mental disorders, toxoplasmosis is an underestimated threat that could be prevented by simple lifestyle changes through educational actions. Furthermore, there are few research studies that address toxoplasmosis-induced mental disorders from a holistic perspective. Thus, a planetary health lens is needed to understand these correlations that directly relate to the promotion of a resilient and empathic civilization, crucial to enabling a flourishing healthy society on all scales
The Correlations among Dietary Lifestyle, Microecology, and Mind-Altering Toxoplasmosis on the Health of People, Place, and the Planet
Being one of the most common foodborne protozoa worldwide, chronic toxoplasmosis caused by Toxoplasma gondii (T. gondii) could contribute significantly to the etiology of several mental disorders. The neurotropic parasite can directly influence the gut microbiota, causing inflammation with subsequent degradation of tryptophan required for parasite growth. Research in humans and animals shows that the gut microbiome is involved in the regulation of brain serotonergic pathways through the microbiota–gut–brain axis. Since the serotonin system is extensively interconnected with the body’s master clock through neuronal networks, the microbiota has been suggested as a potential mediator, fine-tuning circadian misalignment, following a reciprocal relationship with human eating patterns. Furthermore, adherence to an intermittent fasting diet can improve the serotonin biosynthesis pathway in the intestines and improve cognitive function. This review aims to explain the role of fasting in parasite-driven gut microbiome perturbation and the mechanisms by which Toxoplasma infection alters brain function. Due to its significant impact on social–economic status, diet patterns, microbiota disruption, circadian rhythm, chronic inflammation, and mental disorders, toxoplasmosis is an underestimated threat that could be prevented by simple lifestyle changes through educational actions. Furthermore, there are few research studies that address toxoplasmosis-induced mental disorders from a holistic perspective. Thus, a planetary health lens is needed to understand these correlations that directly relate to the promotion of a resilient and empathic civilization, crucial to enabling a flourishing healthy society on all scales
Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance
Antimicrobials are compounds that impede the activities of bacteria, viruses, parasites, or fungi. Continuous antimicrobial overuse, misuse, and improper use for human, animal, and agricultural purposes are raising concerns about antibiotic residue pollution in the environment, and antibiotic resistance genes (ARGs). Because antimicrobial-resistant diseases are linked to human–-microbial ecosystems, environmental pollution from antibiotic residue and ARGs alters the makeup and diversity of human gut microbiota, putting resistance under selection pressure. This perspective proposes that antibiotic-induced microbiome depletion is linked to environmental quality and has repercussions for human health via the gut microbiome’s sensitive ecosystem. This has stimulated new global efforts and multidisciplinary, integrative approaches to addressing Antimicrobial Resistance (AMR) awareness in communities. Several academic papers published in recent years have shown that medicinal plant extracts are effective against diseases on WHO’s pathogen priority lists (PPL), such as the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Traditional medicine, with its knowledge of medicinal plants, promises to be a valuable source of next-generation powerful antimicrobials. Examples include the recent discovery of Artemisinin, a highly active antimalarial drug derived from Artemisia annua, and the discovery of Taxol, an active chemotherapeutic drug derived from the bark of the Pacific yew, Taxus brevifolia. The connections between small and large ecosystems’ vitality, biodiversity protection, and human health have been acknowledged by Planetary Health principles. To address these intertwined concerns, a Planetary Health and Traditional Medicine approach can be adopted, and antimicrobial resistance can be addressed by expanding the screening of medicinal plants for bioactive compounds
The Need to Prioritize Prevention of Viral Spillover in the Anthropopandemicene: A Message to Global Health Researchers and Policymakers
Increased anthropogenic activities including changes in land use and unrelenting ecosystem services related to animal husbandry, wildlife trade, and deforestation are driving the emergence of viral zoonosis. This is primarily due to human–animal interaction which is facilitating the spillover of viral zoonotic pathogens from animals (domestic and wildlife) to humans that could result in epidemics or pandemics. Scientific reports so far have revealed that viral epidemics and pandemics in recent years such as H1N1 Swine Influenza, H5N1 Avian Influenza, Ebola, Zika, Severe Acute Respiratory Syndrome (SARS), and the ongoing SARS-CoV-2 were all zoonotic, and their emergence has been linked with spillover events arising from human–animal interaction. This increased interaction and the increased spillover event could facilitate future pandemic risk, and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, “IPBES”, has declared this “the era of pandemics”. Furthermore, since future pandemics would be triggered by anthropogenic activities, we have called this “anthropopandemicene”, i.e., an era of pandemics driven by anthropogenic activities. To minimize the risk of future pandemics, it is important to prioritize the prevention of viral spillover events. Here, we outline five priority areas for global health researchers and policymakers. These areas include improvement of biosecurity at livestock farms, imposing a moratorium or strictly banning wildlife trade that poses a public health risk, conservation of biodiversity by halting deforestation, investing in community-based research for infectious disease control, and strengthening community healthcare systems in precarious ecosystems and infectious diseases hotspots. Finally, we acknowledge the efforts of other renowned global and legally binding frameworks such as IHR, the Paris Agreement, and CITES with regard to addressing the public health risk of infectious diseases, and we provide recommendations for their improvement
The Need to Prioritize Prevention of Viral Spillover in the Anthropopandemicene: A Message to Global Health Researchers and Policymakers
Increased anthropogenic activities including changes in land use and unrelenting ecosystem services related to animal husbandry, wildlife trade, and deforestation are driving the emergence of viral zoonosis. This is primarily due to human–animal interaction which is facilitating the spillover of viral zoonotic pathogens from animals (domestic and wildlife) to humans that could result in epidemics or pandemics. Scientific reports so far have revealed that viral epidemics and pandemics in recent years such as H1N1 Swine Influenza, H5N1 Avian Influenza, Ebola, Zika, Severe Acute Respiratory Syndrome (SARS), and the ongoing SARS-CoV-2 were all zoonotic, and their emergence has been linked with spillover events arising from human–animal interaction. This increased interaction and the increased spillover event could facilitate future pandemic risk, and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, “IPBES”, has declared this “the era of pandemics”. Furthermore, since future pandemics would be triggered by anthropogenic activities, we have called this “anthropopandemicene”, i.e., an era of pandemics driven by anthropogenic activities. To minimize the risk of future pandemics, it is important to prioritize the prevention of viral spillover events. Here, we outline five priority areas for global health researchers and policymakers. These areas include improvement of biosecurity at livestock farms, imposing a moratorium or strictly banning wildlife trade that poses a public health risk, conservation of biodiversity by halting deforestation, investing in community-based research for infectious disease control, and strengthening community healthcare systems in precarious ecosystems and infectious diseases hotspots. Finally, we acknowledge the efforts of other renowned global and legally binding frameworks such as IHR, the Paris Agreement, and CITES with regard to addressing the public health risk of infectious diseases, and we provide recommendations for their improvement
Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito management
AbstractBackground: In the era of insecticides and anti-malarial drug resistance, gene drive technology holds considerable promise for malaria control. Gene drive technology deploys genetic modifications into mosquito populations to impede their ability to transmit the malaria parasite. This can be either through the disruption of an essential mosquito gene or the association of gene drive with a desirable effector gene. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a gene editing tool that precisely modifies mosquito vector DNA sequences and curtails the rate of pathogen transmission.Methods: A comprehensive search was conducted in the SCOPUS and MEDLINE databases (via PubMed) until October 2023. The keywords used were related to the principles and mechanisms of gene drive technology, its advantages, and disadvantages, and its ethical and regulatory considerations in sustainable malaria eradication.Results: The development of gene drive enables the preferential inheritance of specific genes in targeted mosquitoes, potentially obstructing the transmission of the Plasmodium parasite. This technology was also studied for the control of other vector-borne diseases such as dengue and chikungunya viruses. Despite its experimental superiority over other traditional methods such as insecticide-treated nets and insecticide sprays, the long-term dynamic interplay of mutation and resistance poses challenges for gene drive efficiency in sustainable malaria control.Conclusions: This commentary elucidates the underlying mechanisms and principles of gene drive technology, underscoring its promise and challenges as a novel strategy to curtail malaria prevalence. Although the release of such genetically modified mosquitoes into the natural environment would result in the eradication of the locally targeted species of mosquitoes, the complete eradication of the entire species remains questionable. Thus, the practical application raises significant ethical and regulatory concerns for further research and risk assessment, including the risk of gene drive spreading to nontarget species in the wider theatre of biodiverse species
Emerging Arboviruses of Public Health Concern in Africa: Priorities for Future Research and Control Strategies
Arboviruses are most prevalent in tropical and subtropical regions, where arthropods are widespread. The World Health Organization (WHO) estimated that the mortality burden of arbovirus diseases, such as yellow fever in Africa, was 84,000–170,000 severe cases and 29,000–60,000 deaths in 2013. These epidemics emphasize the urgent need for integrated control and prevention of arboviral diseases. Challenges in managing and controlling arboviral diseases in Africa are mainly attributed to poor insect vector control, insecticide resistance, and poor sanitation and solid waste management. The removal or reduction of mosquito populations amongst susceptible individuals is identified as the most effective measure to control many vector-borne diseases. Current public health needs call for efficient vector control programs and maintenance of adequate surveillance systems through the availability of trained personnel and rapid diagnostic facilities, providing an interdisciplinary response to control and mitigate the threats of emerging and re-emerging arboviruses. Furthermore, research priorities should focus on understanding the factors responsible for adaptation to other vectors, determinants of infection and transmission, and the development of high efficiency antiviral molecules or candidate vaccines. Here, we explore and review our current understanding of arboviruses of public health importance in Africa, with a focus on emerging arboviruses, their arthropod vectors, and the epidemiology of major arboviruses. Finally, we appraise the role of planetary health in addressing the threat of arboviruses and identify other priority areas of research for effective control
Increasing challenges of malaria control in sub-Saharan Africa: priorities for public health research and policymakers
The ever-increasing cases and mortality due to malaria remains one of the most important public health threats, especially in sub-Saharan Africa—where this burden is considerably high. In 2020, sub-Saharan Africa accounted for about 95% of all cases and 96% of all malaria deaths with about 80% of these deaths reported in children under the age of 5. This review, adopting a public health focus, aimed to understand the challenges of malaria control in sub-Saharan Africa despite ongoing public health interventions. Our review highlights two important findings. First, the increasing resistance of malaria parasites to artemisinin-based combination therapy (ACT) and its partner drugs coupled with increased vector resistance to pyrethroids and insecticides is reversing the progress of public health interventions in keeping malaria under control. Second, the wanning for the efficacy of the WHO-approved vaccine i.e. RTS,S from 60 to 70% following 18 months of observation, and its short-term availability remains an impediment to achieving the WHO target of producing malaria vaccines with more than 75% efficacy by 2030. Our findings underline the need to reassess research priorities with a focus on vaccine production in sub-Saharan Africa. Furthermore, African governments and policymakers must be committed to invest both the political and financial capital in vaccine production and distribution
Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa
The rise of globalization and industrialization has driven the demand for rare earth metals (REMs). These metals are widely used in various sectors of the global economy with various applications in medicine, renewable energy, electronics, agriculture, and the military. REMs are likely to remain an important part of our global future, and, as production increases, areas contaminated by REMs are expected to expand over the coming decades. Thus, triggering significant adverse environmental, animal, and human health impacts. Despite increased attention on REMs outside China in recent years, there are limited studies exploring REM production, deposits, and associated health impacts in the African context. Proper mine management, adequate safety protocols, sustainable processing methods, and waste handling systems have been identified and proposed globally; however, the nature and scale of implementing these management protocols on the African continent have been less clear. Therefore, planetary health-centered solutions are urgently needed to be undertaken by researchers, policy makers, and non-governmental actors in Africa and across the globe. This is with the overarching aim of ensuring eco-friendly alternatives and public health consciousness on REM exploitations and hazards for future generations to come
Preventing the Next Pandemic through a Planetary Health Approach: A Focus on Key Drivers of Zoonosis
The ever-increasing global health impact of SARS-CoV-2—the etiological agent of coronavirus disease 2019 (COVID-19)—coupled with its socio-economic burden, has not only revealed the vulnerability of humanity to zoonotic pathogens of pandemic potential but also serves as a wake-up call for global health communities to rethink sustainable approaches towards preventing future pandemics. However, since the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) convened experts have declared that future pandemics are likely to be zoonotic in origin, it is imperative that we understand the key drivers of zoonosis such as biodiversity loss, climate change, wildlife consumption, and population mobility, as well as the scientific evidence underpinning them. In this article, we underscore the correlations of these drivers with the emergence and re-emergence of zoonosis. Consequently, we highlighted the need for multidisciplinary collaboration under the planetary health approach between researchers across the fields of environmental and human health to fill the knowledge and research gaps on key drivers of zoonosis. This is to prevent or limit future pandemics by protecting the natural systems of the Earth and its resources and safeguarding human and animal health