2 research outputs found

    Design and In Vitro Evaluation of Novel Sustained-Release Double-Layer Tablets of Lornoxicam: Utility of Cyclodextrin and Xanthan Gum Combination

    No full text
    The objective of the present study was to develop new directly compressed, double-layer tablets (DLTs) of lornoxicam, a highly potent nonsteroidal anti-inflammatory drug with short half-life, that are characterized by initial burst drug release in the stomach and comply with the release requirements of sustained-release products. Each of the proposed DLTs is composed of a fast-release layer and a sustained-release layer, anticipating rapid drug release that starts in the stomach to rapidly alleviate the symptoms and continues in the intestine to maintain protracted analgesic effect. An amorphous, freeze-dried inclusion complex of lornoxicam with hydroxypropyl-β-cyclodextrin, present in 1:2 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of lornoxicam in the stomach and assure rapid onset of its analgesic effect. Xanthan gum (XG), a hydrophilic matrix-forming agent, was integrated in the sustained-release layer to provide appropriate sustainment of drug release. The weight ratios between the sustained-release layer and fast-release layer present in DLTs were adjusted to reach optimal formulations. DLTs composed of sustained-release layer (40% XG) to fast-release layer in 2:1 weight ratio and those composed of sustained-release layer (50% XG) to fast-release layer in 1:1 weight ratio showed the desired release profile. The drug contained in the fast-release layer showed an initial burst drug release of more than 30% of its drug content during the first 30 min of the release study followed by gradual release of the drug for a period of 8 h
    corecore