11 research outputs found

    Use of ophthalmic B-scan ultrasonography in determining the causes of low vision in patients with diabetic retinopathy

    No full text
    Purpose: To determine the causes of low vision among Sudanese patients with diabetic retinopathy (DR) by using ophthalmic B-scan ultrasonography. Materials and methods: A total of 100 patients with DR at different grades, were recruited prospectively between September 2016 and January 2018. Nidek (Echoscan US-4000) ultrasound unit was used to determine the causes of low vision in diabetic patients according to their glycated haemoglobin (HbA1c) and early treatment of diabetic retinopathy scale (ETDRS) severity levels. Results: Vitreous hemorrhage (VH) 42(66.6%), asteroid hyalosis (AH) 12(14.3%), and partial retinal detachment (PRD) 9(19%) were the main cause of low vision in patients presenting with moderately regulated HbA1c and graded with either minimal or mild nonproliferative retinopathy (NPDR). While VH 15(40.5%), total retinal detachment (TRD) 12(32.4%), posterior vitreous detachment (PVD) 7(19%), and choroidal detachment (CD) 3(8.1%), were dominant in patients with poorly regulated HbA1c and graded either as moderate NPDR; severe NPDR; and proliferative retinopathy (PR). Conclusions: Ophthalmic B-mode ultrasound is a rapid, noninvasive imaging technique that can be used with minimum discomfort in ophthalmological practice for the detection and evaluation of DR complications that predict the visual outcome. Keywords: Diabetic retinopathy, Low vision, Ophthalmic B-scan ultrasonograph

    Functional Characterization and Anti-Tumor Effect of a Novel Group II Secreted Phospholipase A<sub>2</sub> from Snake Venom of Saudi <i>Cerastes cerates gasperetti</i>

    No full text
    Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development

    Unveiling sex-based differences in developing propionic acid-induced features in mice as a rodent model of ASD

    No full text
    Background Males are more likely to develop autism as a neurodevelopmental disorder than females are, although the mechanisms underlying male vulnerability are not fully understood. Therefore, studying the role of autism etiologies considering sex differences in the propionic acid (PPA) rodent model of autism would build greater understanding of how females are protected from autism spectrum disorder, which may be used as a treatment strategy for males with autism. Objectives This study aimed to investigate the sex differences in oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut microbiota impairment as etiological mechanisms for many neurological diseases, with specific reference to autism. Method Forty albino mice were divided into four groups of 10 animals each with two control and two treated groups of both sexes received only phosphate-buffered saline or a neurotoxic dose of PPA (250 mg/kg body weight) for 3 days, respectively. Biochemical markers of energy metabolism, oxidative stress, neuroinflammation, and excitotoxicity were measured in mouse brain homogenates, whereas the presence of pathogenic bacteria was assessed in mouse stool samples. Furthermore, the repetitive behavior, cognitive ability, and physical-neural coordination of the animals were examined. Results Collectively, selected variables related to oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut bacteria were impaired concomitantly with altered behavior in PPA-induced rodent model, with males being more susceptible than females. Conclusion This study explains the role of sex in the higher vulnerability of males to develop autistic biochemical and behavioral features compared with females. Female sex hormones and the higher detoxification capacity and higher glycolytic flux in females serve as neuroprotective contributors in a rodent model of autism

    Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders

    No full text
    Neuropeptides play a major role in maintaining normal brain development in children. Dysfunction of some specific neuropeptides can lead to autism spectrum disorders (ASD) in terms of social interaction and repetitive behavior, but the exact underlying etiological mechanisms are still not clear. In this study, we used an animal model of autism to investigate the role of bee pollen and probiotic in maintaining neuropeptide levels in the brain. We measured the Alpha-melanocyte-stimulating hormone (&alpha;-MSH), Beta-endorphin (&beta;-End), neurotensin (NT), and substance P (SP) in brain homogenates of six studied groups of rats. Group I served as control, given only PBS for 30 days; Group II as an autistic model treated with 250 mg PPA/kg BW/day for 3 days after being given PBS for 27 days. Groups III-VI were denoted as intervention groups. G-III was treated with bee pollen (BP) 250 mg/kg body weight/day; G-IV with Lactobacillus paracaseii (LB) (109 CFU/mL) suspended in PBS; G-V with 0.2 g/kg body weight/day Protexin&reg;, a mixture of probiotics (MPB); and G-VI was transplanted with stool from normal animals (FT) for 27 days prior to the induction of PPA neurotoxicity on the last 3 days of study (days 28&ndash;30). The obtained data were analyzed through the use of principal component analysis (PCA), discriminant analysis (DA), hierarchical clustering, and receiver operating characteristic (ROC) curves as excellent statistical tools in the field of biomarkers. The obtained data revealed that brain levels of the four measured neuropeptides were significantly reduced in PPA-treated animals compared to healthy control animals. Moreover, the findings demonstrate the ameliorative effects of bee pollen as a prebiotic and of the pure or mixed probiotics. This study proves the protective effects of pre and probiotics against the neurotoxic effects of PPA presented as impaired levels of &alpha;-MSH, &beta;-End, NT, and SP

    Urtica pilulifera leaves extract mitigates cadmium induced hepatotoxicity via modulation of antioxidants, inflammatory markers and Nrf-2 signaling in mice

    Get PDF
    Introduction: Cadmium (Cd) is a harmful heavy metal that results in many toxic issues. Urtica pilulifera showed potential pharmaceutical applications. This study investigated the possible ameliorative mechanism of Urtica pilulifera leaves extract (UPLE) against hepatotoxicity induced by cadmium chloride (CdCl2) in mice.Methods:In vitro phytochemical screening and the metal-chelating activity of UPLE were ascertained. Four groups of forty male mice were used (n = 10) as follows; Group 1 (G1) was a negative control. G2 was injected i.p., with UPLE (100 mg/kg b. wt) daily. G3 was injected i.p., with Cd (5 mg/kg b. wt) daily. G4 was injected with Cd as in G3 and with UPLE as in G2. On day 11, the body weight changes were evaluated, blood, and serum samples were collected for hematological and biochemical assessments. Liver tissues were used for biochemical, molecular, and histopathological investigations.Results: The results showed that UPLE contains promising secondary metabolites that considerably lessen the negative effects of Cd on liver. Furthermore, UPLE inhibited oxidative stress and inflammation; restored antioxidant molecules; and promoted nuclear-related factor-2 (Nrf-2) expression. Also, UPLE improved the histopathological alterations induced by Cd.Discussion: This study explored the beneficial role of UPLE treatment in Cd-induced liver injury through enhancing Nrf-2 signaling and antioxidant enzyme gene expression in the liver of mice. Therefore, UPLE could have valuable implications against hepatotoxicity induced by environmental cadmium exposure. Which can be used as a chelating agent against Cd

    Probiotic Ameliorating Effects of Altered GABA/Glutamate Signaling in a Rodent Model of Autism

    No full text
    Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been recorded as an etiological mechanism of ASD. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, is known to be much lower in both patients and rodent models of ASD. We propose correcting GABA signaling as a therapeutic strategy for ASD. In this study, 40 young male western Albino rats, 3&ndash;4 weeks in age, weighing about 60&ndash;70 g, were used. The animals were randomly assigned into six experimental groups, each including eight rats. Group I served as the control group and was orally administered phosphate-buffered saline. Groups II and III served as rodent models of ASD and were orally administered a neurotoxic dose of propionic acid (PPA). The rats in the three therapeutic groups (IV, V, and IV) received the same doses of PPA, followed by 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of ProtexinR, and pure Lactobacillus bulgaricus, respectively, for 3 weeks. Selected variables related to oxidative stress, glutamate excitotoxicity, and gut bacteria were measured in the six groups. Both pure and mixed Lactobacillus and Bifidobacterium&nbsp;were effective in ameliorating glutamate excitotoxicity as an autistic feature developed in the PPA-induced rodent model. Their therapeutic effects mostly involved the correction of oxidative stress, restoration of depleted GABA, and up-regulation of GABA receptor gene expression. Pure Bifidobacterium was the most effective, followed by the mixture of probiotics and finally lactobacillus.&nbsp;In conclusion, Bifidobacteria and lactobacilli can be used independently or in combination as psychobiotics to ameliorate oxidative stress and glutamate excitotoxicity as two confirmed etiological mechanisms through the gut&ndash;brain axis

    Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications

    No full text
    Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota’s link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body’s systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications

    Preliminary study of structural changes of Glucose-6-phosphate dehydrogenase deficiency variants

    Get PDF
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency disorder affecting over 400 million individuals worldwide. G6PD protects red blood cells (RBC) from the harmful effects of oxidative substances. There are more than 400 G6PD mutations, of which 186 variants have shown to be linked to G6PD deficiency by decreasing the activity or stability of the enzyme. Different variants manifest different clinical phenotypes which complicate comprehending the mechanism of the disease. In order to carry out computational approaches to elucidate the structural changes of different G6PD variants that are common to the Asian population, a complete G6PD monomer-ligand complex was constructed using AutoDock 4.2, and the molecular dynamics simulation package GROMACS 4.6.7 was used to study the protein dynamics. The G410D and V291M variants were chosen to represent classes I and II respectively and were created by in silico site-directed mutagenesis. Results from the Root mean square deviation (RMSD), Root mean square fluctuation (RMSF) and Radius of gyration (Rg) analyses provided insights on the structure - function relationship for the variants. G410D indicated impaired dimerization and structural NADP binding while the impaired catalytic activity for V291M was indicated by a conformational change at its mutation site

    The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats

    No full text
    A metabolic disease called hypercholesterolemia is connected to both oxidative damage and inflammation. The goal of the current investigation was to determine if olive oil and palm oil could prevent hypercholesterolemia-induced oxidative stress in the liver of rats fed a high-cholesterol diet (HCD). The experimental mice were given HCD for three months while also receiving 0.5 mL/kg of either palm or olive oil. Serum triglycerides, total cholesterol, LDL cholesterol, vLDL cholesterol, and the atherogenic index all significantly increased in HCD-fed rats, while HDL cholesterol significantly dropped. Additionally, HCD caused a notable rise in proinflammatory cytokines and serum transaminases in liver tissue. Additionally, HCD significantly increased the production of nitric oxide and lipid peroxidation in the liver while decreasing antioxidant enzymes. Treatment with palm and olive oils dramatically reduced the levels of pro-inflammatory cytokines and lipid peroxidation, improved antioxidant defenses, and considerably improved liver function indicators. Additionally, the examined oils dramatically decreased the expression of fatty acid synthase (FAS) in the liver of rats receiving HCD. In conclusion, HCD-fed rats exhibit significant antihyperlipidemic and cholesterol-lowering benefits from palm and olive oils. The improved antioxidant defenses, lower inflammation and lipid peroxidation, and altered hepatic FAS mRNA expression were the main mechanisms by which palm and olive oils produced their advantageous effects
    corecore