6 research outputs found

    Prophylactic Instillation of Hydrogen-Rich Water Decreases Corneal Inflammation and Promotes Wound Healing by Activating Antioxidant Activity in a Rat Alkali Burn Model

    No full text
    Many studies have demonstrated the therapeutic effects of hydrogen in pathological conditions such as inflammation; however, little is known about its prophylactic effects. The purpose of this study is to investigate the prophylactic effects of hydrogen-rich water instillation in a rat corneal alkali burn model. Hydrogen-rich water (hydrogen group) or physiological saline (vehicle group) was instilled continuously to the normal rat cornea for 5 min. At 6 h after instillation, the cornea was exposed to alkali. The area of corneal epithelial defect (CED) was measured every 6 h until 24 h after alkali exposure. In addition, at 6 and 24 h after injury, histological and immunohistochemical observations were made and real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to investigate superoxide dismutase enzyme (SOD)1, SOD2, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression. CED at 12 h and the number of inflammatory infiltrating cells at 6 h after injury were significantly smaller in the hydrogen group than the vehicle group. Furthermore, SOD1 expression was significantly higher in the hydrogen group than the vehicle group at both 6 and 24 h, and the number of PGC-1α-positive cells was significantly larger in the hydrogen group than the vehicle group at 6 h after injury. In this model, prophylactic instillation of hydrogen-rich water suppressed alkali burn-induced inflammation, likely by upregulating expression of antioxidants such as SOD1 and PGC-1α. Hydrogen has not only therapeutic potential but also prophylactic effects that may suppress corneal scarring following injury and promote wound healing

    Prophylactic Instillation of Hydrogen-Rich Water Decreases Corneal Inflammation and Promotes Wound Healing by Activating Antioxidant Activity in a Rat Alkali Burn Model

    No full text
    Many studies have demonstrated the therapeutic effects of hydrogen in pathological conditions such as inflammation; however, little is known about its prophylactic effects. The purpose of this study is to investigate the prophylactic effects of hydrogen-rich water instillation in a rat corneal alkali burn model. Hydrogen-rich water (hydrogen group) or physiological saline (vehicle group) was instilled continuously to the normal rat cornea for 5 min. At 6 h after instillation, the cornea was exposed to alkali. The area of corneal epithelial defect (CED) was measured every 6 h until 24 h after alkali exposure. In addition, at 6 and 24 h after injury, histological and immunohistochemical observations were made and real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to investigate superoxide dismutase enzyme (SOD)1, SOD2, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression. CED at 12 h and the number of inflammatory infiltrating cells at 6 h after injury were significantly smaller in the hydrogen group than the vehicle group. Furthermore, SOD1 expression was significantly higher in the hydrogen group than the vehicle group at both 6 and 24 h, and the number of PGC-1α-positive cells was significantly larger in the hydrogen group than the vehicle group at 6 h after injury. In this model, prophylactic instillation of hydrogen-rich water suppressed alkali burn-induced inflammation, likely by upregulating expression of antioxidants such as SOD1 and PGC-1α. Hydrogen has not only therapeutic potential but also prophylactic effects that may suppress corneal scarring following injury and promote wound healing

    Disulfiram Ophthalmic Solution Inhibited Macrophage Infiltration by Suppressing Macrophage Pseudopodia Formation in a Rat Corneal Alkali Burn Model

    No full text
    FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation
    corecore