16 research outputs found

    Antioxidants from the Brown Alga Dictyopteris undulata

    Get PDF
    An investigation of anti-oxidative compounds from the brown alga Dictyopteris undulata has led to the isolation and identification of isozonarol, isozonarone, chromazonarol, zonaroic acid and isozonaroic acid. Their structures were identified by comparison of MS and NMR spectra. Full NMR assignment and absolute configuration of isozonaroic acid are described. Isozonarol showed the most potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity among the compounds isolated

    Black ginger (Kaempferia parviflora) extract enhances circadian rhythm and promotes lipolysis in mice fed a high-fat diet

    No full text
    Circadian rhythms are endogenous oscillations that regulate physiological and biochemical processes with approximately 24-h rhythms. Circadian rhythmic disorders caused by a high-fat diet (HFD) are associated with metabolic syndrome and obesity. Herein, we assessed whether black ginger (Kaempferia parviflora) modulates disturbances in the circadian rhythm and improves obesity caused by an HFD in C57BL/6 mice. Three study groups were created: normal diet, HFD, and HFD + K. parviflora extract (KPE). HFD-fed mice showed attenuated circadian locomotor activity, weight gain, and increased serum triglyceride and cholesterol levels, whereas HFD mice administered KPE showed improved circadian locomotor activity and reduced body weight and serum triglyceride levels. Moreover, following RNAi knockdown of clock genes in 3T3-L1 adipocytes, KPE was found to enhance clock gene expression and induce lipolysis-related gene expression in adipocytes. Collectively, these results suggest that KPE improves rhythm disturbances in HFD-fed mice and exhibits anti-obesity effects

    Quantification of Histidine-Containing Dipeptides in Dolphin Serum Using a Reversed-Phase Ion-Pair High-Performance Liquid Chromatography Method

    No full text
    The quantification of histidine-containing dipeptides (anserine, carnosine, and balenine) in serum might be a diagnostic tool to assess the health condition of animals. In this study, an existing reversed-phase ion-pair high-performance liquid chromatography (HPLC)–ultraviolet detection method was improved and validated to quantify serum anserine, carnosine, and balenine levels in the dolphin. The serum was deproteinized with trichloroacetic acid and directly injected into the HPLC system. Chromatographic separation of the three histidine-containing dipeptides was achieved on a TSK–gel ODS-80Ts (4.6 mm × 150 mm, 5 µm) analytical column using a mobile phase of 50 mmol/L potassium dihydrogen phosphate (pH 3.4) containing 6 mmol/L 1-heptanesulfonic acid and acetonitrile (96:4). The standard curve ranged from 0.1 µmol/L to 250 µmol/L. The average accuracy of the intra- and inter-analysis of anserine, carnosine, and balenine was 97–106%. The relative standard deviations of total precision (RSDr) of anserine, carnosine, and balenine in dolphin serum were 5.9%, 4.1%, and 2.6%, respectively. The lower limit of quantification of these compounds was 0.11–0.21 µmol/L. These results indicate that the improved method is reliable and concise for the simultaneous determination of anserine, carnosine, and balenine in dolphin serum, and may be useful for evaluation of health conditions in dolphins. Furthermore, this method can also be applied to other biological samples

    Novel Method to Quantify β‑Glucan in Processed Foods: Sodium Hypochlorite Extracting and Enzymatic Digesting (SEED) Assay

    No full text
    Some β-glucans have attracted attention due to their functionality as an immunostimulant and have been used in processed foods. However, accurately measuring the β-glucan content of processed foods using existing methods is difficult. We demonstrate a new method, the Sodium hypochlorite Extracting and Enzymatic Digesting (SEED) assay, in which β-glucan is extracted using sodium hypochlorite, dimethyl sulfoxide, and 5 mol/L sodium hydroxide and then digested into β-glucan fragments using Westase which is an enzyme having β-1,6- and β-1,3 glucanase activity. The β-glucan fragments are further digested into glucose using exo-1,3-β-d-glucanase and β-glucosidase. We measured β-glucan comprising β-1,3-, -1,6-, and -1,(3),4- bonds in various polysaccharide reagents and processed foods using our novel method. The SEED assay was able to quantify β-glucan with good reproducibility, and the recovery rate was >90% for food containing β-glucan. Therefore, the SEED assay is capable of accurately measuring the β-glucan content of processed foods

    Toddaculin, Isolated from of <i>Toddalia asiatica</i> (L.) Lam., Inhibited Osteoclastogenesis in RAW 264 Cells and Enhanced Osteoblastogenesis in MC3T3-E1 Cells

    No full text
    <div><p>Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. <i>Toddalia asiatica</i> (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from <i>Toddalia asiatica</i> (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.</p></div
    corecore