173 research outputs found

    Risk factors for delayed presentation and referral of symptomatic cancer: Evidence for common cancers

    Get PDF
    Background:It has been suggested that the known poorer survival from cancer in the United Kingdom, compared with other European countries, can be attributed to more advanced cancer stage at presentation. There is, therefore, a need to understand the diagnostic process, and to ascertain the risk factors for increased time to presentation.Methods:We report the results from two worldwide systematic reviews of the literature on patient-mediated and practitioner-mediated delays, identifying the factors that may influence these.Results:Across cancer sites, non-recognition of symptom seriousness is the main patient-mediated factor resulting in increased time to presentation. There is strong evidence of an association between older age and patient delay for breast cancer, between lower socio-economic status and delay for upper gastrointestinal and urological cancers and between lower education level and delay for breast and colorectal cancers. Fear of cancer is a contributor to delayed presentation, while sanctioning of help seeking by others can be a powerful mediator of reduced time to presentation. For practitioner delay, β€˜misdiagnosis’ occurring either through treating patients symptomatically or relating symptoms to a health problem other than cancer, was an important theme across cancer sites. For some cancers, this could also be linked to inadequate patient examination, use of inappropriate tests or failing to follow-up negative or inconclusive test results.Conclusion:Having sought help for potential cancer symptoms, it is therefore important that practitioners recognise these symptoms, and examine, investigate and refer appropriately. Β© 2009 Cancer Research UK All rights reserved

    Enzymatic capacities of metabolic fuel use in cuttlefish (Sepia officinalis) and responses to food deprivation: insight into the metabolic organization and starvation survival strategy of cephalopods

    Get PDF
    Food limitation is a common challenge for animals. Cephalopods are sensitive to starvation because of high metabolic rates and growth rates related to their "live fast, die young" life history. We investigated how enzymatic capacities of key metabolic pathways are modulated during starvation in the common cuttlefish (Sepia officinalis) to gain insight into the metabolic organization of cephalopods and their strategies for coping with food limitation. In particular, lipids have traditionally been considered unimportant fuels in cephalopods, yet, puzzlingly, many species (including cuttlefish) mobilize the lipid stores in their digestive gland during starvation. Using a comprehensive multi-tissue assay of enzymatic capacities for energy metabolism, we show that, during long-term starvation (12 days), glycolytic capacity for glucose use is decreased in cuttlefish tissues, while capacities for use of lipid-based fuels (fatty acids and ketone bodies) and amino acid fuels are retained or increased. Specifically, the capacity to use the ketone body acetoacetate as fuel is widespread across tissues and gill has a previously unrecognized capacity for fatty acid catabolism, albeit at low rates. The capacity for de novo glucose synthesis (gluconeogenesis), important for glucose homeostasis, likely is restricted to the digestive gland, contrary to previous reports of widespread gluconeogenesis among cephalopod tissues. Short-term starvation (3-5 days) had few effects on enzymatic capacities. Similar to vertebrates, lipid-based fuels, putatively mobilized from fat stores in the digestive gland, appear to be important energy sources for cephalopods, especially during starvation when glycolytic capacity is decreased perhaps to conserve available glucose

    Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis

    Get PDF
    Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4–5Β days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61–71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion, macromolecule synthesis, and gametogenesis

    Adrenocorticotropic Hormone Suppresses Gonadotropin-Stimulated Estradiol Release from Zebrafish Ovarian Follicles

    Get PDF
    While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mLβˆ’1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity

    Active behaviour during early development shapes glucocorticoid reactivity

    Get PDF
    TGlucocorticoids are the final effectors of the stress axis, with numerous targets in the central nervous system and the periphery. They are essential for adaptation, yet currently it is unclear how early life events program the glucocorticoid response to stress. Here we provide evidence that involuntary swimming at early developmental stages can reconfigure the cortisol response to homotypic and heterotypic stress in larval zebrafish (Danio rerio), also reducing startle reactivity and increasing spontaneous activity as well as energy efficiency during active behaviour. Collectively, these data identify a role of the genetically malleable zebrafish for linking early life stress with glucocorticoid function in later life

    Glucocorticoid receptor (DlGR1) is expressed in pre-larval and larval stages of the teleost fish Dicentrarchus labrax

    Get PDF
    Glucocorticoid hormone receptors (GR), members of the nuclear hormone receptor superfamily, are ligand-dependent transcription factors expressed in various tissues by binding to specific DNA sequences. Since glucocorticoids have a role in maintaining the homeostatic status in fish, we previously cloned and sequenced a GR (DlGR1) of adult Dicentrarchus labrax; we also showed mRNA expression (in situ hybridization) and tissue immunohistochemical localization of DlGR1 in several organs. This work has now been extended to the examination of the expression, tissue distribution, and cytolocalization of DlGR1 in larval developmental stages by similar methods to those used for the adult organs. The riboprobe included the DlGR1 cDNA transcriptional activation domain (1.0–1,300 nucleotide sequence) showing no significant similarity with a known second GR cDNA sequence of sea bass. The antibody was specific for an opportunely selected peptide sequence of the DlGR1 transcriptional domain. In histological sections of brain, head kidney, gills, liver, anterior intestine, and spleen cells, the riboprobe was mainly located in the cell nucleus. The antibody identified DlGR1 in the head kidney, gills, liver, and anterior intestine, mainly located in the cytosol. These results are in agreement with the receptor location in adult tissues. The greater presence of both the transcript and protein of DlGR1 in the late developmental stages suggests an increasing expression of this receptor. The cytolocalization (nuclear-cytosolic) and presumptive roles of DlGR1-containing tissues are discussed

    Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon

    Get PDF
    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.Peer reviewed: YesNRC publication: Ye

    The Metabolic Consequences of Hepatic AMP-Kinase Phosphorylation in Rainbow Trout

    Get PDF
    AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is proposed to function as a β€œfuel gauge” to monitor cellular energy status in response to nutritional environmental variations. However, in fish, few studies have addressed the metabolic consequences related to the activation of this kinase. This study demonstrates that the rainbow trout (Oncorhynchus mykiss) possesses paralogs of the three known AMPK subunits that co-diversified, that the AMPK protein is present in the liver and in isolated hepatocytes, and it does change in response to physiological (fasting-re-feeding cycle) and pharmacological (AICAR and metformin administration and incubations) manipulations. Moreover, the phosphorylation of AMPK results in the phosphorylation of acetyl-CoA carboxylase, a main downstream target of AMPK in mammals. Other findings include changes in hepatic glycogen levels and several molecular actors involved in hepatic glucose and lipid metabolism, including mRNA transcript levels for glucokinase, glucose-6-phosphatase and fatty acid synthase both in vivo and in vitro. The fact that most results presented in this study are consistent with the recognized role of AMPK as a master regulator of energy homeostasis in living organisms supports the idea that these functions are conserved in this piscine model

    Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    Get PDF
    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway

    Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    Get PDF
    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11Ξ²-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11Ξ²-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1Ξ±-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish
    • …
    corecore