76 research outputs found
Recommended from our members
Heavy-Ion-Induced Electronic Desorption of Gas from Metals
During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering
Recommended from our members
Beam Interaction Measurements with a Retarding Field Analyzer in a High-Current High-Vacuum Positively-Charged Particle Accelerator
A Retarding Field Analyzer (RFA) was inserted in a drift region of a magnetic transport section of the high-current experiment (HCX) that is at high-vacuum to measure ions and electrons resulting from beam interaction with background gas and walls. The ions are expelled during the beam by the space-charge potential and the electrons are expelled mainly at the end of the beam, when the beam potential decays. The ion energy distribution shows the beam potential of {approx} 2100 V and the beam-background gas total cross-section of 1.6x10{sup -20} m{sup 2}. The electron energy distribution reveals that the expelled electrons are mainly desorbed from the walls and gain {approx} 22 eV from the beam potential decaying with time before entering the RFA. Details of the RFA design and of the measured energy distributions are presented and discussed
Recommended from our members
Electronic Desorption of gas from metals
During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering
Recommended from our members
Absolute Measurement of Electron Cloud Density
Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL
Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response
We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation
Recommended from our members
Results of the Recirculator Project at LLNL
The Heavy Ion Fusion Group at Lawrence Livermore National Laboratory has for several years been developing the world's first circular induction accelerator designed for space charge dominated ion beams. Experiments on one quarter of the ring have been completed. The accelerator extended ten half-lattice periods (HLP) with induction cores for acceleration placed on every other HLP. A network of Capacitive Beam Probes (C-probes) was also enabled for beam position monitoring throughout the bend section. These C-probes have been instrumental in steering experiment, implementation of the acceleration stages and the dipole pulser, and the first attempts at coordinated bending and acceleration. Data from these experiments and emittance measurements will be presented
Recommended from our members
Advances in U.S. Heavy Ion Fusion Science
During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy
Recommended from our members
Heavy ion fusion science research for high energy density physics and fusion applications
During the past two years, the U.S. heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high brightness beam transport, advanced theory and numerical simulations, and heavy ion target designs for fusion. First experiments combining radial and longitudinal compression of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2007, these results will enable initial ion beam target experiments in warm dense matter to begin next year at LBNL. We are assessing how these new techniques apply to low-cost modular fusion drivers and higher-gain direct-drive targets for inertial fusion energy
- …