156 research outputs found
ACTA PHYSICA POLONICA A MODIFIED KRATZER-FUES FORMULA FOR ROTATION-VIBRATION ENERGY OF DIATOMIC MOLECULES*
An extension of the Kratzer-Fues approach to analytical calculation of the rotation-vibration energy of diatomic molecules is proposed. The eigen -v a l u e s f r o m t h i s a p p r o a c h a r e a p p l i e d i n c a l c u l a t i o n o f t h e r o t a t i o n a l a n d rovibrational energies and in evaluation of molecular constants of selected diatomic molecules, resulting in satisfactory reproduction of experimental frequencies over a wide range of rotational states. In contrast to our previous proposition the rotational dependence of vibration energy is taken into account. An additional set of fitted parameters which include equilibrium distance and dissociation constant was also employed
Homeostatic competition drives tumor growth and metastasis nucleation
We propose a mechanism for tumor growth emphasizing the role of homeostatic
regulation and tissue stability. We show that competition between surface and
bulk effects leads to the existence of a critical size that must be overcome by
metastases to reach macroscopic sizes. This property can qualitatively explain
the observed size distributions of metastases, while size-independent growth
rates cannot account for clinical and experimental data. In addition, it
potentially explains the observed preferential growth of metastases on tissue
surfaces and membranes such as the pleural and peritoneal layers, suggests a
mechanism underlying the seed and soil hypothesis introduced by Stephen Paget
in 1889 and yields realistic values for metastatic inefficiency. We propose a
number of key experiments to test these concepts. The homeostatic pressure as
introduced in this work could constitute a quantitative, experimentally
accessible measure for the metastatic potential of early malignant growths.Comment: 13 pages, 11 figures, to be published in the HFSP Journa
Patient-Specific Prosthetic Fingers by Remote Collaboration - A Case Study
The concealment of amputation through prosthesis usage can shield an amputee
from social stigma and help improve the emotional healing process especially at
the early stages of hand or finger loss. However, the traditional techniques in
prosthesis fabrication defy this as the patients need numerous visits to the
clinics for measurements, fitting and follow-ups. This paper presents a method
for constructing a prosthetic finger through online collaboration with the
designer. The main input from the amputee comes from the Computer Tomography
(CT) data in the region of the affected and the non-affected fingers. These
data are sent over the internet and the prosthesis is constructed using
visualization, computer-aided design and manufacturing tools. The finished
product is then shipped to the patient. A case study with a single patient
having an amputated ring finger at the proximal interphalangeal joint shows
that the proposed method has a potential to address the patient's psychosocial
concerns and minimize the exposure of the finger loss to the public.Comment: Open Access articl
Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites
Quantum-chemical computations were used to investigate the structure–antioxidant parameter relationships of α-lipoic acid and its natural metabolites bisnorlipoic acid and tetranorlipoic acid in their oxidized and reduced forms. The enantiomers of lipoic and dihydrolipoic acid were optimized using the B3LYP/6-311+G(3df,2p), B3LYP/aug-cc-pVDZ and MP2(full)/6-31+G(d,p) levels of theory as isolated molecules and in the presence of water. The geometries of the metabolites and the values of their antioxidant parameters (proton affinity, bond dissociation enthalpy, adiabatic ionization potential, spin density, and the highest occupied molecular orbital energy) were calculated at the B3LYP/6-311+G(3df,2p) level of theory. The results obtained reveal similarities between these structures: a pentatomic, nonaromatic ring is present in the oxidized forms, while an unbranched aliphatic chain (as found in saturated fatty acids) is present in both the oxidized and the reduced forms. Analysis of the spin density and the highest occupied molecular orbital energy revealed that the SH groups exhibited the greatest electron-donating activities. The values obtained for the proton affinity, bond dissociation enthalpy and adiabatic ionization potential indicate that the preferred antioxidant mechanisms for α-lipoic acid and its metabolites are sequential proton loss electron transfer in polar media and hydrogen atom transfer in vacuum
Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics
Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions
- …