17 research outputs found

    Computational Homogenization of Architectured Materials

    Get PDF
    Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials

    ELASTIC BALANCE OF HALF-PLANE WITH RECTILINEAR SOMILIAN DISLOCATION

    No full text
    Closed solution of the elasticity problem on the half-plane balance with rectilinear shift dislocation is presented. The dislocation core is assumed to lie inside the area, and the slip line - to cross the half-plane boundary. The solution applicability to the estimation of the crust stress state near disjoint dislocations is considered

    Internally architectured materials with directionally asymmetric friction

    No full text
    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the -coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with of the order of 10. Further increase in is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations

    Responsive materials: A novel design for enhanced machine-augmented composites

    Get PDF
    The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed

    A constitutive model of the deformation behaviour of twinning induced plasticity (TWIP) steel at different temperatures

    Full text link
    The mechanical behaviour of Fe-18Mn-0.6C-1Al (wt%) TWIP steel was modelled in the temperature range from room temperature to 400°C. The proposed constitutive model was based on the Kocks-Mecking-Estrin (KME) model. The model parameters were determined using extensive experimental measurements of the physical parameters such as the dislocation mean free path and the volume fraction of twinned grains. More than 100 grains with a total area of ~300μm2 were examined at different strain levels over the entire stress-strain curve. Uniaxial tensile deformation of the TWIP steel was modelled for different deformation temperatures using a modelling approach which considers two distinct populations of grains: twinned and twin-free ones. A key point of the work was a meticulous experimental determination of the evolution of the volume fraction of twinned grains during uniaxial tensile deformation. This information was implemented in a phase-mixture model that yielded a very good agreement with the experimental tensile behaviour for the tested range of deformation temperatures. © 2014 Elsevier B.V

    Size effects in micro cup drawing

    Full text link
    Experimental studies into the effect of blank thickness on the deep drawing response of the coarse-grained and ultrafine-grained copper demonstrated the occurrence of a size effect: the dependence of the maximum load and the limit drawing ratio on the blank thickness in sub-millimetre range. A dislocation based constitutive model taking into account the thickness effects was used for numerical simulations of the process. It was demonstrated that the occurrence of the blank thickness effect is governed by the ratio of the blank thickness t to the grain size D of the material. Critical values of the t/. D ratio below which the size effect comes to bearing were determined. The obtained results can be seen as a demonstration of more general suitability of the model developed for predicting microforming operations with full account of the specimen or work-piece dimensions

    Deep drawing behaviour of ultrafine grained copper : modelling and experiment

    Full text link
    Ultrafine grained materials produced by severe plastic deformation methods possess attractive mechanical properties such as high strength compared with traditional coarse grained counterparts and reasonable ductility. Between existing severe plastic deformation methods the Equal Channel Angular Pressing is the most promising for future industrial applications and can produce a variety of ultrafine grained microstructures in materials depending on route, temperature and number of passes during processing. Driven by a rising trend of miniaturisation of parts these materials are promising candidates for microforming processes. Considering that bi-axial deformation of sheet (foil) is the major operation in microforming, the investigation of the influence of the number of ECAP passes on the bi-axial ductility in micro deep drawing test has been examined by experiments and FE simulation in this study. The experiments have showed that high force was required for drawing of the samples processed by ECAP compare to coarse grained materials. The limit drawing ratio of ultrafine grained samples was in the range of 1.9&ndash;2.0 with ECAP pass number changing from 1 to 16, while a higher value of 2.2 was obtained for coarse grained copper. However, the notable decrease in tensile ductility with increase in strength was not as pronounced for bi-axial ductility. The FE simulation using standard isotropic hardening model and von Mises yielding criterion confirmed these findings. <br /
    corecore