60 research outputs found

    Theory of a cavity around a large floating sphere in complex (dusty) plasma

    Get PDF
    In the last experiment with the PK-3 Plus laboratory onboard the International Space Station, interactions of millimeter-size metallic spheres with a complex plasma were studied~[M. Schwabe {\it et al.}, New J. Phys. {\bf 19}, 103019 (2017)]. Among the phenomena observed was the formation of cavities (regions free of microparticles forming a complex plasma) surrounding the spheres. The size of the cavity is governed by the balance of forces experienced by the microparticles at the cavity edge. In this article we develop a detailed theoretical model describing the cavity size and demonstrate that it agrees well with sizes measured experimentally. The model is based on a simple practical expression for the ion drag force, which is constructed to take into account simultaneously the effects of non-linear ion-particle coupling and ion-neutral collisions. The developed model can be useful for describing interactions between a massive body and surrounding complex plasma in a rather wide parameter regime.Comment: 9 pages, 4 figures; to be published (2019

    Dissipative solitary wave at the interface of a binary complex plasma

    Get PDF
    The propagation of a dissipative solitary wave across an interface is studied in a binary complex plasma. The experiments were performed under microgravity conditions in the PK-3 Plus Laboratory on board the International Space Station using microparticles with diameters of 1.55 micrometre and 2.55 micrometre immersed in a low-temperature plasma. The solitary wave was excited at the edge of a particle-free region and propagated from the sub-cloud of small particles into that of big particles. The interfacial effect was observed by measuring the deceleration of particles in the wave crest. The results are compared with a Langevin dynamics simulation, where the waves were excited by a gentle push on the edge of the sub-cloud of small particles. Reflection of the wave at the interface is induced by increasing the strength of the push. By tuning the ion drag force exerted on big particles in the simulation, the effective width of the interface is adjusted. We show that the strength of reflection increases with narrower interfaces

    Ekoplasma - The Future of Complex Plasma Research in aboard the International Space Station

    Get PDF
    Ekoplasma is a joint German-Russian project, developing the future multi-purpose laboratory for the investigation of complex plasmas under microgravity conditions aboard the International Space Station (ISS). Complex plasmas are low-temperature plasmas, consisting of neutral gas atoms, ions, electrons and micro-meter sized particles as an additional component. The particles become charged in the plasma and as a result of their mutual repulsion form an optically thin cloud that can be studied in its full spatial and dynamical complexity on the granularity scale of each particle by optical cameras. Therefore, complex plasmas allow fundamental investigations down to the kinetic level of individual particles also for a wide field of interdisciplinary topics in classical condensed matter physics. Since gravity prevents the formation of large, homogeneous systems on earth, research on the ISS is essential, and Ekoplasma will follow in a line of successful preceding experiments aboard the ISS: PKE-Nefedov, PK-3 Plus and the currently operating PK-4 facility. Ekoplasma is planned to be launched to the ISS in 2022, and it will cover a wide range of research topics such as solidification and melting, phase separation in binary systems, the transition to turbulence, active matter or electrorheology

    Three-dimensional structure of a string-fluid complex plasma

    Get PDF
    Three-dimensional structure of complex (dusty) plasmas was investigated under long-term microgravity conditions in the International-Space-Station-based Plasmakristall-4 facility. The microparticle suspensions were confined in a polarity-switched dc discharge. The experimental results were compared to the results of the molecular dynamics simulations with the interparticle interaction potential represented as a superposition of isotropic Yukawa and anisotropic quadrupole terms. Both simulated and experimental data exhibited qualitatively similar structural features indicating the bulk liquid-like order with the inclusion of solid-like strings aligned with the axial electric field. Individual strings were identified and their size spectrum was calculated. The decay rate of the size spectrum was found to decrease with the enhancement of string-like structural features

    Slowing of acoustic waves in electrorheological and string-fluid complex plasmas

    Get PDF
    The PK-4 laboratory consists of a direct current plasma tube into which microparticles are injected, forming a complex plasma. The microparticles acquire many electrons from the ambient plasma and are thus highly charged and interact with each other. If ion streams are present, wakes form downstream of the microparticles, which lead to an attractive term in the potential between the microparticles, triggering the appearance of microparticle strings and modifying the complex plasma into an electrorheological form. Here we report on a set of experiments on compressional waves in such a string fluid in the PK-4 laboratory during a parabolic flight and on board the International Space Station. We find a slowing of acoustic waves and hypothesize that the additional attractive interaction term leads to slower wave speeds than in complex plasmas with purely repulsive potentials. We test this hypothesis with simulations, and compare with theory
    • …
    corecore