8 research outputs found

    Ultra-Short-Pulse Lasers—Materials—Applications

    No full text
    We overview recent developments of 3D± (additive/subtractive) manufacturing/printing from the point of view of laser development, beam delivery tools, applications, and materials. The average power of ultra-short-pulsed lasers has followed a Moore’s scaling trajectory, doubling every two years, for the past 20 years. This requires fast beam scanning solutions and beam delivery control for larger-area applications. New material synthesis with high spatial resolution is provided at the high intensity TW/cm2-PW/cm2 exposure site. Net-shape manufacturing with a reduced number of post-processing steps is a practical trait of 3D± printing. With computer numerical control (CNC) optimised using artificial intelligence (AI), the future of 3D± manufacturing is discussed

    Computational Imaging at the Infrared Beamline of the Australian Synchrotron Using the Lucy–Richardson–Rosen Algorithm

    No full text
    The Fourier transform infrared microspectroscopy (FTIRm) system of the Australian Synchrotron has a unique optical configuration with a peculiar beam profile consisting of two parallel lines. The beam is tightly focused using a 36× Schwarzschild objective to a point on the sample and the sample is scanned pixel by pixel to record an image of a single plane using a single pixel mercury cadmium telluride detector. A computational stitching procedure is used to obtain a 2D image of the sample. However, if the imaging condition is not satisfied, then the recorded object’s information is distorted. Unlike commonly observed blurring, the case with a Schwarzschild objective is unique, with a donut like intensity distribution with three distinct lobes. Consequently, commonly used deblurring methods are not efficient for image reconstruction. In this study, we have applied a recently developed computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) in the online FTIRm system for the first time. The method involves two steps: training step and imaging step. In the training step, the point spread function (PSF) library is recorded by temporal summation of intensity patterns obtained by scanning the pinhole in the x-y directions across the path of the beam using the single pixel detector along the z direction. In the imaging step, the process is repeated for a complicated object along only a single plane. This new technique is named coded aperture scanning holography. Different types of samples, such as two pinholes; a number 3 USAF object; a cross shaped object on a barium fluoride substrate; and a silk sample are used for the demonstration of both image recovery and 3D imaging applications

    Nanoscale Printing of Indium-Tin-Oxide by Femtosecond Laser Pulses

    No full text
    For constructing optical and electrical micro-devices, the deposition/printing of materials with sub-1 μm precision and size (cross-section) is required. Crystalline c-ITO (indium tin oxide) nanostructures were patterned on glass with sufficient precision to form 20–50 nm gaps between individual disks or lines of ∼250 nm diameter or width. The absorbed energy density [J/cm3] followed a second-order dependence on pulse energy. This facilitated high-resolution and precise nanoscale laser-writing at a laser wavelength of 515 nm. Patterns for optical elements such as circular gratings and micro-disks were laser-printed using ITO as a resist. Unexposed amorphous a-ITO was chemically removed in aqueous 1% vol. HF solution. This use of a-ITO as a solid resist holds promise for metamaterial and micro-optical applications

    Anisotropy of 3D Columnar Coatings in Mid-Infrared Spectral Range

    No full text
    Polarisation analysis in the mid-infrared fingerprint region was carried out on thin (∼1 μm) Si and SiO2 films evaporated via glancing angle deposition (GLAD) method at 70∘ to the normal. Synchrotron-based infrared microspectroscopic measurements were carried out on the Infrared Microspectroscopy (IRM) beamline at Australian Synchrotron. Specific absorption bands, particularly Si-O-Si stretching vibration, was found to follow the angular dependence of ∼cos2θ, consistent with the absorption anisotropy. This unexpected anisotropy stems from the enhanced absorption in nano-crevices, which have orientation following the cos2θ angular dependence as revealed by Fourier transforming the image of the surface of 3D columnar films and numerical modeling of light field enhancement by sub-wavelength nano-crevices

    THz Filters Made by Laser Ablation of Stainless Steel and Kapton Film

    No full text
    THz band-pass filters were fabricated by femtosecond-laser ablation of 25-μm-thick micro-foils of stainless steel and Kapton film, which were subsequently metal coated with a ∼70 nm film, closely matching the skin depth at the used THz spectral window. Their spectral performance was tested in transmission and reflection modes at the Australian Synchrotron’s THz beamline. A 25-μm-thick Kapton film performed as a Fabry–Pérot etalon with a free spectral range (FSR) of 119 cm−1, high finesse Fc≈17, and was tuneable over ∼10μm (at ∼5 THz band) with β=30∘ tilt. The structure of the THz beam focal region as extracted by the first mirror (slit) showed a complex dependence of polarisation, wavelength and position across the beam. This is important for polarisation-sensitive measurements (in both transmission and reflection) and requires normalisation at each orientation of linear polarisation

    Single Shot Lensless Interferenceless Phase Imaging of Biochemical Samples Using Synchrotron near Infrared Beam

    No full text
    Phase imaging of biochemical samples has been demonstrated for the first time at the Infrared Microspectroscopy (IRM) beamline of the Australian Synchrotron using the usually discarded near-IR (NIR) region of the synchrotron-IR beam. The synchrotron-IR beam at the Australian Synchrotron IRM beamline has a unique fork shaped intensity distribution as a result of the gold coated extraction mirror shape, which includes a central slit for rejection of the intense X-ray beam. The resulting beam configuration makes any imaging task challenging. For intensity imaging, the fork shaped beam is usually tightly focused to a point on the sample plane followed by a pixel-by-pixel scanning approach to record the image. In this study, a pinhole was aligned with one of the lobes of the fork shaped beam and the Airy diffraction pattern was used to illuminate biochemical samples. The diffracted light from the samples was captured using a NIR sensitive lensless camera. A rapid phase-retrieval algorithm was applied to the recorded intensity distributions to reconstruct the phase information. The preliminary results are promising to develop multimodal imaging capabilities at the IRM beamline of the Australian Synchrotron

    Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer

    No full text
    The controlled deposition of CoCrFeNiMo0.2 high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into ∼2.4 μm focal spots on the ∼50-nm thick plasma-sputtered films of CoCrFeNiMo0.2. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (10−8 atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo0.2α≈6×105 cm−1 was determined at 600-nm wavelength. The real and imaginary parts of the refractive index (n+iκ) of HEA were determined from reflectance and transmittance by using nanofilms

    Extending the Depth of Focus of an Infrared Microscope Using a Binary Axicon Fabricated on Barium Fluoride

    No full text
    Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise
    corecore