7 research outputs found

    Glutaredoxin Regulates Apoptosis in Cardiomyocytes via NFκB Targets Bcl-2 and Bcl-xL: Implications for Cardiac Aging

    No full text
    Cardiomyocyte apoptosis is a well-established contributor to irreversible injury following myocardial infarction (MI). Increased cardiomyocyte apoptosis is associated also with aging in animal models, exacerbated by MI; however, mechanisms for this increased sensitivity to oxidative stress are unknown. Protein mixed-disulfide formation with glutathione (protein glutathionylation) is known to change the function of intermediates that regulate apoptosis. Since glutaredoxin (Grx) specifically catalyzes protein deglutathionylation, we examined its status with aging and its influence on regulation of apoptosis. Grx1 content and activity are decreased by ∼40% in elderly (24-mo) Fischer 344 rat hearts compared to adult (6-mo) controls. A similar extent of Grx1 knockdown in H9c2 cardiomyocytes led to increased apoptosis, decreased NFκB-dependent transcriptional activity, and decreased production (mRNA and protein) of anti-apoptotic NFκB target genes, Bcl-2 and Bcl-xL. Knockdown of Bcl-2 and/or Bcl-xL in wild-type H9c2 cells to the same extent (∼50%) as observed in Grx1-knockdown cells increased baseline apoptosis; and knockdown of Bcl-xL, but not Bcl-2, also increased oxidant-induced apoptosis analogous to Grx1-knockdown cells. Natural Grx1-deficient cardiomyocytes isolated from elderly rats also displayed diminished NFκB activity and Bcl-xL content. Taken together, these data indicate diminution of Grx1 in elderly animals contributes to increased apoptotic susceptibility via regulation of NFκB function. Antioxid. Redox Signal. 12, 1339–1353

    Molecular Mechanisms and Clinical Implications of Reversible Protein S-Glutathionylation

    No full text
    Sulfhydryl chemistry plays a vital role in normal biology and in defense of cells against oxidants, free radicals, and electrophiles. Modification of critical cysteine residues is an important mechanism of signal transduction, and perturbation of thiol–disulfide homeostasis is an important consequence of many diseases. A prevalent form of cysteine modification is reversible formation of protein mixed disulfides (protein–SSG) with glutathione (GSH). The abundance of GSH in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides suggests that reversible S-glutathionylation may be a common feature of redox signal transduction and regulation of the activities of redox sensitive thiol-proteins. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism, because it is a specific and efficient catalyst of protein–SSG deglutathionylation. However, mechanisms of control of intracellular Grx activity in response to various stimuli are not well understood, and delineation of specific mechanisms and enzyme(s) involved in formation of protein–SSG intermediates requires further attention. A large number of proteins have been identified as potentially regulated by reversible S-glutathionylation, but only a few studies have documented glutathionylation-dependent changes in activity of specific proteins in a physiological context. Oxidative stress is a hallmark of many diseases which may interrupt or divert normal redox signaling and perturb protein–thiol homeostasis. Examples involving changes in S-glutathionylation of specific proteins are discussed in the context of diabetes, cardiovascular and lung diseases, cancer, and neurodegenerative diseases. Antioxid. Redox Signal, 10, 1941–1988
    corecore