32 research outputs found
Analysis of immunization time, amplitude, and adverse events of seven different vaccines against SARS-CoV-2 across four different countries
Background: Scarce information exists in relation to the comparison of seroconversion and adverse events following immunization (AEFI) with different SARS-CoV-2 vaccines. Our aim was to correlate the magnitude of the antibody response to vaccination with previous clinical conditions and AEFI. Methods: A multicentric comparative study where SARS-CoV-2 spike 1-2 IgG antibodies IgG titers were measured at baseline, 21-28 days after the first and second dose (when applicable) of the following vaccines: BNT162b2 mRNA, mRNA-1273, Gam-COVID-Vac, Coronavac, ChAdOx1-S, Ad5-nCoV and Ad26.COV2. Mixed model and Poisson generalized linear models were performed. Results: We recruited 1867 individuals [52 (SD 16.8) years old, 52% men]. All vaccines enhanced anti-S1 and anti-S2 IgG antibodies over time (p<0.01). The highest increase after the first and second dose was observed in mRNA-1273 (p<0.001). There was an effect of previous SARS-CoV-2 infection; and an interaction of age with previous SARS-CoV-2 infection, Gam-COVID-Vac and ChAdOx1-S (p<0.01). There was a negative correlation of Severe or Systemic AEFI (AEs) of naïve SARS-CoV-2 subjects with age and sex (p<0.001); a positive interaction between the delta of antibodies with Gam-COVID-Vac (p=0.002). Coronavac, Gam-COVID-Vac and ChAdOx1-S had less AEs compared to BNT162b (p<0.01). mRNA-1273 had the highest number of AEFIs. The delta of the antibodies showed an association with AEFIs in previously infected individuals (p<0.001). Conclusions: The magnitude of seroconversion is predicted by age, vaccine type and SARS-CoV-2 exposure. AEs are correlated with age, sex, and vaccine type. The delta of the antibody response only correlates with AEs in patients previously exposed to SARS-CoV-2. Registration number: ClinicalTrials.gov, identifier NCT05228912
3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified in 2012 as the causative agent of a severe, lethal respiratory disease occurring across several countries in the Middle East. To date there have been over 1,600 laboratory confirmed cases of MERS-CoV in 26 countries with a case fatality rate of 36%. Given the endemic region, it is possible that MERS-CoV could spread during the annual Hajj pilgrimage, necessitating countermeasure development. In this report, we describe the clinical and radiographic changes of rhesus monkeys following infection with 5×106 PFU MERS-CoV Jordan-n3/2012. Two groups of NHPs were treated with either a human anti-MERS monoclonal antibody 3B11-N or E410-N, an anti-HIV antibody. MERS-CoV Jordan-n3/2012 infection resulted in quantifiable changes by computed tomography, but limited other clinical signs of disease. 3B11-N treated subjects developed significantly reduced lung pathology when compared to infected, untreated subjects, indicating that this antibody may be a suitable MERS-CoV treatment
Characterization of Physiologic Patients' Response to Fluid Interventions in the Intensive Care Unit
Fluid administration is one of the most common therapies performed on intensive care patients. However, no clinical evidence is available to establish optimal strategies for fluid management as well as characterizing the effects on the cardiovascular system after therapy initiation. Moreover, fluid overload showed a correlation with worse clinical outcomes. This study aims at characterizing the response to the fluid intervention of intensive care unit patients. We extracted a population of 57 subjects with available electrocardiogram and arterial blood pressure recordings from the MIMIC-III database and evaluated the induced changes in cardiovascular and autonomic indices. We compare autonomic indices obtained from a statistical model of heartbeat dynamics before and after the intervention. Results show significant differences in RR interval, blood pressure, autonomic and Baroreflex activities up to 60 minutes after fluid administration. Specifically, we observed a median increase in RR interval, Baroreflex activity, and overall activity both in pressure and RR time series, as well as a reduction in systolic blood pressure. Specifically, a subgroup of survived patients shows an imbalance toward sympathetic activity, whereas non-survivors have a persistent vagal state after fluid administration. Clinical relevance - The observed differences in autonomic response after fluid administration, together with the assessment of their correlation with patients' mortality, paves the way for the inclusion of heart rate variability indices as markers for assessing fluid responsiveness as associated with ICU patients' state
Antibody Titer Correlates with Omicron Infection in Vaccinated Healthcare Workers
The advent of vaccines against SARS-CoV-2 has drastically reduced the level of hospitalization with severe COVID-19 disease in infected individuals. However, the diffusion of variants of concern still challenge the protection conferred by vaccines raised against the wild-type form of the virus. Here, we have characterized the antibody response to the BNT162b2 (Comirnaty) mRNA vaccine in patients infected with the Omicron variant. We analyzed a population of 4354 vaccinated healthcare workers (HCW) from 7 different hospitals in Italy and monitored infection with SARS-CoV-2 Omicron. We correlated infection with the antibody response after vaccination. We found that a lower level of IgG, younger age, and the presence of allergies correlate with increased infection during the Omicron wave, and that infections correlate with wild-type spike protein antibody titers below 350 BAU/mL. These results support the necessity of a fourth booster dose, particularly for individuals with lower levels of antibodies
Education in Global Health Radiology
Radiologists and radiology professionals have noted the gaps in diagnostic and interventional imaging access worldwide as documented by the World Health Organization. Since global health focuses on issues that transcend national boundaries, emphasizes solutions that often require global cooperation, and is multidisciplinary, then the concept of radiology education in global health should consider this broader context of international partnership and collaboration. There are several models in place for education in the global health setting with emphasis on radiology. This chapter discusses faculty exchanges, scholarly collaboration, partnership, formal education, online education as a tool, integration of global health concepts into radiology curricula, and socially responsible collaboration. Regardless of the type of model used, educational goals and objectives should be based on initial assessment data and address the appropriate needs. Curricula should be established in partnership with all stakeholders and with consideration for ethical best practices, continuous evaluation and improvement of the program, and open communication among stakeholders
Molecular imaging reveals a progressive pulmonary inflammation in lower airways in ferrets infected with 2009 H1N1 pandemic influenza virus.
Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [(18)F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [(18)F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7-7.0). By days 2 and 3, consolidation (CT) and inflammation ([(18)F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0-7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [(18)F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman's ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time
Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation.
Active tuberculosis (TB) often presents with advanced pulmonary disease, including irreversible lung damage and cavities. Cavitary pathology contributes to antibiotic failure, transmission, morbidity and mortality. Matrix metalloproteinases (MMPs), in particular MMP-1 are implicated in TB pathogenesis. We explored the mechanisms relating MMP/TIMP imbalance to cavity formation in a modified rabbit model of cavitary TB. Our model results in consistent progression of consolidation to human-like cavities (100% by day 28) with resultant bacillary burdens (>107 CFU/g) far greater than those found in matched granulomatous tissue (105 CFU/g). Using a novel, breath-hold computerized tomography scanning and image analysis protocol. We show that cavities develop rapidly from areas of densely consolidated tissue. Radiological change correlated with a decrease in functional lung tissue as estimated by changes in lung density during controlled pulmonary expansion (R2=0.6356, p?<?0.0001). We demonstrated that the expression of interstitial collagenase (MMP-1) is specifically greater in cavitary compared to granulomatous lesions (p?<?0.01), and that TIMP-3 significantly decreases at the cavity surface. Our findings demonstrate that an MMP-1/TIMP imbalance, is associated with the progression of consolidated regions to cavities containing very high bacterial burdens. Our model provided mechanistic insight, correlating with human disease at the pathological, microbiological and molecular levels,. It also provides a strategy to investigate therapeutics in the context of complex TB pathology. We used these findings to predict a MMP/TIMP balance in active TB; and confirmed this in human plasma, revealing the potential of MMP/TIMP levels as key components of a diagnostic matrix aimed at distinguishing active from latent TB (PPV=92.9%; 95%CI 66.1-99.8%, NPV=85.6%; 95%CI 77.0-91.9%)