596 research outputs found

    Water users associations in the NEN region : IFA interventions and overall dynamics

    Get PDF

    Unconventional Magnetization below 25 K in Nitrogen-doped Diamond provides hints for the existence of Superconductivity and Superparamagnetism

    Get PDF
    The magnetization of nitrogen-doped single crystalline diamond bulk samples shows unconventional field and temperature hysteresis loops at T â‰Č 25 K. The results suggest the existence of superparamagnetic and superconducting regions in samples with nitrogen concentration <200 ppm. Both phases vanish at temperatures above 25 K where the samples show diamagnetic behavior similar to undoped diamond. The observation of superparamagnetism and superconductivity is attributed to the nitrogen doping and to the existence of defective regions. From particle-induced X-ray emission with ppm resolution we rule out that the main observations below 25 K are due to magnetic impurities. We investigated also the magnetic properties of ferromagnetic/high-temperature superconducting oxide bilayers. The magnetization results obtained from those bilayers show remarkable similarities to the ones in nitrogen-doped diamond

    Difficult encounters around "monkey cheeks": Farmers' interests and the design of flood retention areas in Thailand

    Get PDF
    Flood retention areas are being increasingly promoted for flood risk management. People living in these areas will accept them if their interests are taken into account. The present study analyses the extent to which farmers' interests were taken into account in two flood retention projects in Thailand. A feasibility study was conducted in preparation for the first project which included public participation. The second project was a pilot project implemented in the same zone at a small scale. Participants in the public participation process and farmers living in proposed flood retention areas were interviewed for the purpose of the present study. Agreement could have been reached between the farmers and the public agencies concerning the flood retention areas. However, the participation process did not enable frank discussion about the conditions under which farmers would accept the project. The second project was designed without public participation and offered very little compensation to farmers. In countries marked by power imbalances in water resources management, public agencies may impose flood retention areas, but the absence of agreements with farmers can reduce the effectiveness of the measure. Reaching such agreements requires challenging the imbalanced power relationships between farmers and public agencies

    Integrated water resources management as a new approach to water security

    Get PDF
    Access to safe water is a worldwide problem facing three quarters of a billion people every day. The problem of access to water is not primarily due to an overall scarcity of water, but rather the unequal geographical and seasonal distribution of the water resources. The key issue at stake here is, how to make water available. The new approach presented by international institutions for improving water access is Integrated Water Resource Management. This chapter questions this new approach and highlights the depoliticizing implications

    Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von hippel-lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities

    Get PDF
    E3 ubiquitin ligases are attractive targets in the ubiquitin-proteasome system, however, the development of small-molecule ligands has been rewarded with limited success. The von Hippel-Lindau protein (pVHL) is the substrate recognition subunit of the VHL E3 ligase that targets HIF-1α for degradation. We recently reported inhibitors of the pVHL:HIF-1α interaction, however they exhibited moderate potency. Herein, we report the design and optimization, guided by X-ray crystal structures, of a ligand series with nanomolar binding affinities

    The influence of Ga+^+-irradiation on the transport properties of mesoscopic conducting thin films

    Full text link
    We studied the influence of 30keV Ga+^+-ions -- commonly used in focused ion beam (FIB) devices -- on the transport properties of thin crystalline graphite flake, La0.7_{0.7}Ca0.3_{0.3}MnO3_3 and Co thin films. The changes of the electrical resistance were measured in-situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga+^+ fluences much below those used for patterning and ion beam induced deposition (IBID), limiting seriously the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.Comment: 14 pages, 11 figures, will be published in Nanotechnology 201

    Pulsed Feedback Defers Cellular Differentiation

    Get PDF
    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle
    • 

    corecore