4 research outputs found
Physiological and transcriptomic characterization of a fliA mutant of Pseudomonas putida KT2440
Pseudomonas putida KT2440 encodes 23 alternative sigma factors. The fliA gene, which encodes σ28, is in a cluster with other genes involved in flagella biosynthesis and chemotaxis. Reverse transcriptase-PCR revealed that this cluster is comprised of four independent transcriptional units: flhAF, fleNfliA, cheYZA and cheBmotAB. We generated a nonpolar fliA mutant by homologous recombination and tested its motility, adhesion to biotic and abiotic surfaces, and responses to various stress conditions. The mutant strain was nonmotile and exhibited decreased capacity to bind to corn seeds, although its ability to colonize the rhizosphere of plants was unaffected. The mutant was also affected in binding to abiotic surfaces and its ability to form biofilms decreased by almost threefold. In the fliA mutant background expression of 25 genes was affected: two genes were upregulated and 23 genes were downregulated. In addition to a number of motility and chemotaxis genes, the fliA gene product is also necessary for the expression of some genes potentially involved in amino acid utilization or stress responses; however, we were unable to assign specific phenotypes linked to these genes since the fliA mutant used the same range of amino acids as the parental strain, and was as tolerant as the wild type to stress imposed by heat, antibiotics, NaCl, sodium dodecyl sulfate, H2O2 and benzoate. Based on the sequence alignment of promoters recognized by FliA and genome in silico analysis, we propose that P. putidaσ28 recognizes a TCAAG-t-N12-GCCGATA consensus sequence located between −34 and −8 and that this sequence is preferentially associated with an AT-rich upstream region
The TetR Family of Transcriptional Repressors
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, α-, β-, and γ-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org
Pneumonia treated in the internal medicine department: Focus on healthcare-associated pneumonia
Patients with pneumonia treated in the internal medicine department (IMD) are often at risk of healthcare-associated pneumonia (HCAP). The importance of HCAP is controversial. We invited physicians from 72 IMDs to report on all patients with pneumonia hospitalized in their department during 2weeks (one each in January and June 2010) to compare HCAP with community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP). We analysed 1002 episodes of pneumonia: 58.9% were CAP, 30.6% were HCAP and 10.4% were HAP. A comparison between CAP, HCAP and HAP showed that HCAP patients were older (77, 83 and 80.5years; p<0.001), had poorer functional status (Barthel 100, 30 and 65; p<0.001) and had more risk factors for aspiration pneumonia (18, 50 and 34%; p<0.001). The frequency of testing to establish an aetiological diagnosis was lower among HCAP patients (87, 72 and 79; p<0.001), as was adherence to the therapeutic recommendations of guidelines (70, 23 and 56%; p<0.001). In-hospital mortality increased progressively between CAP, HCAP and HAP (8, 19 and 27%; p<0.001). Streptococcus pneumoniae was the main pathogen in CAP and HCAP. Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) caused 17 and 12.3% of HCAP. In patients with a confirmed aetiological diagnosis, the independent risk factors for pneumonia due do difficult-to-treat microorganisms (Enterobacteriaceae, P. aeruginosa or MRSA) were HCAP, chronic obstructive pulmonary diseases and higher Port Severity Index. Our data confirm the importance of maintaining high awareness of HCAP among patients treated in IMDs, because of the different aetiologies, therapy requirements and prognosis of this population. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases